
LabVIEWTM

LabVIEW Fundamentals

LabVIEW Fundamentals

August 2005
374029A-01



Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599, 
Canada 800 433 3488, China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, 
Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 51190000, 
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400, 
Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 0 348 433 466, 
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210, 
Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197, 
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 02 2377 2222, 
Thailand 662 278 6777, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support Resources and Professional Services appendix. 
To comment on National Instruments documentation, refer to the National Instruments Web site at ni.com/
info and enter the info code feedback.

© 2005 National Instruments Corporation. All rights reserved.



 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects 
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National 
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives 
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be 
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before 
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are 
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical 
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent 
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. 
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF 
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR 
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY 
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including 
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments 
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover 
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or 
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, 
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, 
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National 
Instruments Corporation.

In regards to components used in USI (Xerces C++, ICU, and HDF5), the following copyrights apply. For a listing of the conditions and 
disclaimers, refer to the USICopyrights.chm.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Copyright © 1999 The Apache Software Foundation. All rights reserved.

Copyright © 1995–2003 International Business Machines Corporation and others. All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright © 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section 
on ni.com/legal for more information about National Instruments trademarks.

FireWire® is the registered trademark of Apple Computer, Inc. Other product and company names mentioned herein are trademarks or trade 
names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no 
agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file 
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF 
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN 
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT 
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE 
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, 
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS 
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND 
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL 
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR 
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE 
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD 
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD 
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID 
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO 
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. 
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING 
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN 



COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL 
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING 
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE 
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, 
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.



© National Instruments Corporation v LabVIEW Fundamentals

Contents

About This Manual
Conventions ...................................................................................................................xiii

Chapter 1
Introduction to LabVIEW

LabVIEW Documentation Resources............................................................................1-1
LabVIEW Help................................................................................................1-1
Print Documents ..............................................................................................1-2
Readme Documents.........................................................................................1-3

LabVIEW VI Templates, Example VIs, and Tools .......................................................1-3
LabVIEW VI Templates..................................................................................1-4
LabVIEW Example VIs ..................................................................................1-4
LabVIEW Tools for DAQ Configuration (Windows).....................................1-4

Chapter 2
Introduction to Virtual Instruments

Front Panel .....................................................................................................................2-2
Block Diagram...............................................................................................................2-2

Terminals.........................................................................................................2-3
Nodes...............................................................................................................2-4
Wires................................................................................................................2-4
Structures.........................................................................................................2-5

Icon and Connector Pane ...............................................................................................2-5
Using and Customizing VIs and SubVIs .......................................................................2-6

Chapter 3
LabVIEW Environment

Getting Started Window ................................................................................................3-1
Controls Palette..............................................................................................................3-1
Functions Palette............................................................................................................3-2
Navigating the Controls and Functions Palettes ............................................................3-2
Tools Palette ..................................................................................................................3-3
Menus and Toolbars.......................................................................................................3-4

Menus ..............................................................................................................3-4
Shortcut Menus .................................................................................3-4

VI Toolbar .......................................................................................................3-5
Project Explorer Window Toolbars.................................................................3-5



Contents

LabVIEW Fundamentals vi ni.com

Context Help Window................................................................................................... 3-5
Project Explorer Window.............................................................................................. 3-6
Navigation Window....................................................................................................... 3-6
Customizing Your Work Environment ......................................................................... 3-7

Customizing the Controls and Functions Palettes........................................... 3-7
Setting Work Environment Options................................................................ 3-7

Chapter 4
Building the Front Panel

Front Panel Controls and Indicators .............................................................................. 4-1
Styles of Controls and Indicators .................................................................... 4-2

Modern and Classic Controls and Indicators.................................... 4-2
System Controls and Indicators ........................................................ 4-2

Numeric Displays, Slides, Scroll Bars, Knobs, Dials, and Time Stamps ....... 4-2
Numeric Controls and Indicators...................................................... 4-3
Slide Controls and Indicators ........................................................... 4-3
Scroll Bar Controls and Indicators ................................................... 4-4
Rotary Controls and Indicators......................................................... 4-4
Time Stamp Control and Indicator ................................................... 4-4

Graphs and Charts ........................................................................................... 4-5
Buttons, Switches, and Lights......................................................................... 4-5

Radio Buttons Controls .................................................................... 4-5
Text Entry Boxes, Labels, and Path Displays ................................................. 4-6

String Controls and Indicators .......................................................... 4-6
Combo Box Controls ........................................................................ 4-6
Path Controls and Indicators............................................................. 4-7

Array, Matrix, and Cluster Controls and Indicators........................................ 4-7
Listboxes, Tree Controls, and Tables.............................................................. 4-7

Listboxes........................................................................................... 4-7
Tree Controls .................................................................................... 4-7
Tables................................................................................................ 4-8

Ring and Enumerated Type Controls and Indicators ...................................... 4-8
Ring Controls.................................................................................... 4-8
Enumerated Type Controls ............................................................... 4-8

Container Controls .......................................................................................... 4-9
Tab Controls ..................................................................................... 4-9
Subpanel Controls............................................................................. 4-9

I/O Name Controls and Indicators .................................................................. 4-10
Waveform Control ............................................................................ 4-10
Digital Waveform Control................................................................ 4-10
Digital Data Control ......................................................................... 4-11

References to Objects or Applications............................................................ 4-11
.NET and ActiveX Controls (Windows)......................................................... 4-12



Contents

© National Instruments Corporation vii LabVIEW Fundamentals

Configuring Front Panel Objects ...................................................................................4-12
Showing and Hiding Optional Elements .........................................................4-13
Changing Controls to Indicators and Indicators to Controls ...........................4-13
Replacing Front Panel Objects ........................................................................4-13

Configuring the Front Panel ..........................................................................................4-13
Coloring Objects..............................................................................................4-14
Aligning and Distributing Objects...................................................................4-14
Grouping and Locking Objects .......................................................................4-14
Resizing Objects..............................................................................................4-15
Adding Space to the Front Panel without Resizing the Window ....................4-15

Labeling .........................................................................................................................4-16
Text Characteristics .......................................................................................................4-16
Designing User Interfaces..............................................................................................4-17

Using Front Panel Controls and Indicators .....................................................4-17
Designing Dialog Boxes..................................................................................4-17

Chapter 5
Building the Block Diagram

Block Diagram Objects..................................................................................................5-1
Block Diagram Terminals ...............................................................................5-1

Control and Indicator Data Types .....................................................5-2
Constants ...........................................................................................5-3

Block Diagram Nodes .....................................................................................5-3
Polymorphic VIs and Functions ......................................................................5-4

Functions Overview.......................................................................................................5-4
Adding Terminals to Functions .......................................................................5-5
Built-in VIs and Functions ..............................................................................5-5

Express VIs ....................................................................................................................5-5
Using Wires to Link Block Diagram Objects ................................................................5-6

Wire Appearance and Structure.......................................................................5-6
Wiring Objects.................................................................................................5-7

Bending Wires...................................................................................5-7
Undoing Wires ..................................................................................5-8
Automatically Wiring Objects ..........................................................5-8
Selecting Wires .................................................................................5-8

Correcting Broken Wires.................................................................................5-8
Coercion Dots..................................................................................................5-9

Block Diagram Data Flow .............................................................................................5-9
Data Dependency and Artificial Data Dependency.........................................5-10

Missing Data Dependencies..............................................................5-11
Flow-Through Parameters.................................................................5-12

Data Flow and Managing Memory..................................................................5-12
Designing the Block Diagram........................................................................................5-13



Contents

LabVIEW Fundamentals viii ni.com

Chapter 6
Running and Debugging VIs

Running VIs................................................................................................................... 6-1
Correcting Broken VIs .................................................................................................. 6-2

Finding Causes for Broken VIs....................................................................... 6-2
Common Causes of Broken VIs...................................................................... 6-3

Debugging Techniques .................................................................................................. 6-3
Execution Highlighting ................................................................................... 6-3
Single-Stepping............................................................................................... 6-4
Probe Tool....................................................................................................... 6-4
Breakpoints ..................................................................................................... 6-4

Handling Errors ............................................................................................................. 6-5
Error Clusters .................................................................................................. 6-6
Using While Loops for Error Handling .......................................................... 6-7
Using Case Structures for Error Handling ...................................................... 6-7

Chapter 7
Creating VIs and SubVIs

Searching for Examples................................................................................................. 7-1
Using Built-In VIs and Functions.................................................................................. 7-1
Creating SubVIs ............................................................................................................ 7-1

Creating an Icon .............................................................................................. 7-2
Building the Connector Pane .......................................................................... 7-3
Creating SubVIs from Sections of a VI .......................................................... 7-4
Designing SubVI Front Panels........................................................................ 7-4
Viewing the Hierarchy of VIs ......................................................................... 7-4
Polymorphic VIs ............................................................................................. 7-5

Saving VIs ..................................................................................................................... 7-6
Naming VIs ..................................................................................................... 7-6
Saving for a Previous Version ........................................................................ 7-7

Customizing VIs............................................................................................................ 7-7

Chapter 8
Loops and Structures

For Loop and While Loop Structures ............................................................................ 8-1
For Loops ........................................................................................................ 8-2
While Loops .................................................................................................... 8-3
Controlling Timing ......................................................................................... 8-5
Auto-Indexing Loops ...................................................................................... 8-5

Auto-Indexing to Set the For Loop Count........................................ 8-6
Auto-Indexing with While Loops..................................................... 8-6



Contents

© National Instruments Corporation ix LabVIEW Fundamentals

Using Loops to Build Arrays...........................................................................8-7
Shift Registers and the Feedback Node in Loops............................................8-7

Shift Registers ...................................................................................8-7
Feedback Node..................................................................................8-10

Default Data in Loops .....................................................................................8-11
Case, Sequence, and Event Structures ...........................................................................8-11

Case Structures ................................................................................................8-11
Case Selector Values and Data Types...............................................8-12
Input and Output Tunnels .................................................................8-13
Using Case Structures for Error Handling ........................................8-13

Sequence Structures.........................................................................................8-13
Event Structures...............................................................................................8-15

Chapter 9
Grouping Data Using Strings, Arrays, and Clusters

Grouping Data with Strings ...........................................................................................9-1
Strings on the Front Panel ...............................................................................9-1

String Display Types.........................................................................9-2
Tables ..............................................................................................................9-2
Editing, Formatting, and Parsing Strings ........................................................9-3

Formatting and Parsing Strings.........................................................9-3
Grouping Data with Arrays and Clusters.......................................................................9-4

Arrays ..............................................................................................................9-4
Restrictions........................................................................................9-4
Indexes ..............................................................................................9-4
Examples of Arrays...........................................................................9-5
Creating Array Controls, Indicators, and Constants .........................9-7
Creating Multidimensional Arrays....................................................9-7
Array Functions.................................................................................9-8
Default Data in Arrays ......................................................................9-10

Clusters ............................................................................................................9-10
Order of Cluster Elements.................................................................9-10
Cluster Functions ..............................................................................9-11
Creating Cluster Controls, Indicators, and Constants .......................9-11

Chapter 10
Graphs and Charts

Types of Graphs and Charts...........................................................................................10-1
Waveform Graphs and Charts .........................................................................10-2

Waveform Graphs .............................................................................10-2
Waveform Charts ..............................................................................10-3
Waveform Data Type........................................................................10-3



Contents

LabVIEW Fundamentals x ni.com

XY Graphs ...................................................................................................... 10-3
Intensity Graphs and Charts ............................................................................ 10-4

Intensity Charts................................................................................. 10-5
Intensity Graphs................................................................................ 10-6

Digital Waveform Graphs ............................................................................... 10-7
Digital Waveform Data Type ........................................................... 10-10

3D Graphs ....................................................................................................... 10-10
Customizing Graphs and Charts .................................................................................... 10-13

Using Multiple X- and Y-Scales ..................................................................... 10-13
Autoscaling ..................................................................................................... 10-13
Formatting X- and Y-Scales ........................................................................... 10-13
Using the Graph Palette .................................................................................. 10-14
Customizing Graph and Chart Appearance .................................................... 10-15
Customizing Graphs........................................................................................ 10-15

Using Graph Cursors ........................................................................ 10-16
Using Graph Annotations ................................................................. 10-17
Customizing 3D Graphs ................................................................... 10-18

Customizing Charts......................................................................................... 10-18
Configuring Chart History Length ................................................... 10-19
Configuring Chart Update Modes .................................................... 10-19
Using Overlaid and Stacked Plots .................................................... 10-20

Chapter 11
File I/O

Basics of File I/O........................................................................................................... 11-1
Choosing a File I/O Format........................................................................................... 11-2
Using VIs and Functions for Common File I/O Operations.......................................... 11-3
Using Storage VIs.......................................................................................................... 11-5
Creating Text and Spreadsheet Files ............................................................................. 11-6

Formatting and Writing Data to Files ............................................................. 11-7
Scanning Data from Files................................................................................ 11-7

Creating Binary Files..................................................................................................... 11-7
Creating Datalog Files................................................................................................... 11-7
Writing Waveforms to Files .......................................................................................... 11-8
Reading Waveforms from Files..................................................................................... 11-9

Chapter 12
Documenting and Printing VIs

Documenting VIs........................................................................................................... 12-1
Printing VIs ................................................................................................................... 12-2



Contents

© National Instruments Corporation xi LabVIEW Fundamentals

Appendix A
Technical Support and Professional Services

Glossary

Index



© National Instruments Corporation xiii LabVIEW Fundamentals

About This Manual

Before you read this manual, use the Getting Started with LabVIEW manual 
as a tutorial to familiarize yourself with the LabVIEW graphical 
programming environment and the basic LabVIEW features you use to 
build data acquisition and instrument control applications.

This manual describes LabVIEW programming concepts, techniques, 
features, VIs, and functions you can use to create test and measurement, 
data acquisition, instrument control, datalogging, measurement analysis, 
and report generation applications.

This manual is a subset of the content available in the LabVIEW Help, 
which includes all the content in this manual. Refer to the LabVIEW Help 
for more information about any of the concepts described in this manual.

This manual does not include specific information about each palette, tool, 
menu, dialog box, control or indicator, or built-in VI or function. Refer to 
the LabVIEW Help for more information about these items and for detailed, 
step-by-step instructions for using LabVIEW features and for building 
specific applications. Refer to the LabVIEW Documentation Resources 
section of Chapter 1, Introduction to LabVIEW, for more information about 
the LabVIEW Help and accessing it.

Conventions
This manual uses the following conventions:

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to 
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 



About This Manual

LabVIEW Fundamentals xiv ni.com

names, controls and indicators on the front panel, dialog boxes, sections of 
dialog boxes, menu names, and palette names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction 
to a key concept. Italic text also denotes text that is a placeholder for a word 
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, operations, variables, 
filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer 
automatically prints to the screen. This font also emphasizes lines of code 
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value 
that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text 
following it applies only to that platform.

right-click (Mac OS) Press <Command>-click to perform the same action as a 
right-click.



© National Instruments Corporation 1-1 LabVIEW Fundamentals

1
Introduction to LabVIEW

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a 
graphical programming language that uses icons instead of lines of text to 
create applications. In contrast to text-based programming languages, 
where instructions determine the order of program execution, LabVIEW 
uses dataflow programming, where the flow of data through the nodes on 
the block diagram determines the execution order of the VIs and functions. 
VIs, or virtual instruments, are LabVIEW programs that imitate physical 
instruments.

In LabVIEW, you build a user interface by using a set of tools and objects. 
The user interface is known as the front panel. You then add code using 
graphical representations of functions to control the front panel objects. 
This graphical source code is also known as G code or block diagram code. 
The block diagram contains this code. In some ways, the block diagram 
resembles a flowchart.

You can purchase several add-on software toolkits for developing 
specialized applications. All the toolkits integrate seamlessly in LabVIEW. 
Refer to the National Instruments Web site at ni.com\toolkits for more 
information about these toolkits.

LabVIEW Documentation Resources
LabVIEW includes extensive online and print documentation for new and 
experienced LabVIEW users.

LabVIEW Help
Use the LabVIEW Help to access information about LabVIEW 
programming concepts, step-by-step instructions for using LabVIEW, and 
reference information about LabVIEW VIs, functions, palettes, menus, and 
tools.

The LabVIEW Help includes links to the technical support resources on the 
National Instruments Web site, such as NI Developer Zone, the 
KnowledgeBase, and the Product Manuals Library.



Chapter 1 Introduction to LabVIEW

LabVIEW Fundamentals 1-2 ni.com

Access the LabVIEW Help by selecting Help»Search the LabVIEW 
Help. You also can print a help topic or a book of help topics from the 
LabVIEW Help.

Refer to the LabVIEW Help for more information about printing help 
topics.

Note (Mac OS) National Instruments recommends that you use Safari 1.0 or later or 
Firefox 1.0.2 or later to view the LabVIEW Help. (Linux) National Instruments recommends 
that you use Netscape 6.0 or later, Mozilla 1.2 or later, or Firefox 1.0.2 or later to view the 
LabVIEW Help.

After you install a LabVIEW add-on such as a toolkit, module, or driver, 
the documentation for that add-on appears in the LabVIEW Help or appears 
in a separate help system you access by selecting Help»Add-On Help, 
where Add-On Help is the name of the separate help system for the add-on.

Print Documents
The following print documents contain information that you might find 
helpful as you use LabVIEW:

• Getting Started with LabVIEW—Use this manual as a tutorial to 
familiarize yourself with the LabVIEW graphical programming 
environment and the basic LabVIEW features you use to build data 
acquisition and instrument control applications.

• LabVIEW Quick Reference Card—Use this card as a reference for 
information about documentation resources, keyboard shortcuts, data 
type terminals, and tools for editing, execution, and debugging.

• LabVIEW Fundamentals—Use this manual to learn about LabVIEW 
programming concepts, techniques, features, VIs, and functions you 
can use to create test and measurement, data acquisition, instrument 
control, datalogging, measurement analysis, and report generation 
applications. The LabVIEW Help includes all the content in this 
manual.

• LabVIEW Release Notes—Use these release notes to install and 
uninstall LabVIEW. The release notes also describe the system 
requirements for the LabVIEW software, including the LabVIEW 
Application Builder.

• LabVIEW Upgrade Notes—Use these upgrade notes to upgrade 
LabVIEW for Windows, Mac OS, and Linux to the latest version. 
The upgrade notes also describe new features and issues you might 
encounter when you upgrade.



Chapter 1 Introduction to LabVIEW

© National Instruments Corporation 1-3 LabVIEW Fundamentals

These documents are available in print and as PDFs in the labview\
manuals directory. You must have Adobe Reader with Search and 
Accessibility 5.0.5 or later installed to view the PDFs. You must have 
Adobe Reader with Search and Accessibility 6.x or later installed to search 
PDF versions of these manuals. (Mac OS) You must have Adobe Reader 
with Search and Accessibility 6.x or later installed to view the PDFs.

Refer to the Adobe Systems Incorporated Web site at www.adobe.com to 
download Acrobat Reader. Refer to the National Instruments Product 
Manuals Library at ni.com/manuals for updated documentation 
resources.

Readme Documents
The following readme documents contain information that you might find 
helpful as you use LabVIEW:

• LabVIEW Readme—Use this file to learn important last-minute 
information about LabVIEW, including installation and upgrade 
issues, compatibility issues, changes from the previous version of 
LabVIEW, and known issues with LabVIEW. Open the LabVIEW 
Readme by selecting Start»All Programs»National Instruments»
LabVIEW 8.0»Readme and opening readme.html or by navigating 
to the labview\readme directory and opening readme.html.

• LabVIEW Application Builder Readme—Use this document to learn 
about installing the LabVIEW Application Builder, which is included 
in the LabVIEW Professional Development System and is available 
for purchase separately. Open the LabVIEW Application Builder 
Readme by selecting Start»All Programs»National Instruments»
LabVIEW 8.0»Readme and opening readme_AppBldr.html or by 
navigating to the labview\readme directory and opening 
readme_AppBldr.html.

LabVIEW VI Templates, Example VIs, and Tools
Use the LabVIEW VI templates, example VIs, and tools as a starting point 
to help you design and build VIs.



Chapter 1 Introduction to LabVIEW

LabVIEW Fundamentals 1-4 ni.com

LabVIEW VI Templates
The built-in VI templates include the subVIs, functions, structures, and 
front panel objects you need to get started building common measurement 
applications. VI templates open as untitled VIs that you must save. Select 
File»New to display the New dialog box, which lists the built-in VI 
templates. You also can display the New dialog box by clicking the New 
link in the Getting Started window.

LabVIEW Example VIs
LabVIEW searches among hundreds of example VIs you can use and 
incorporate into VIs that you create. You can modify an example to fit an 
application, or you can copy and paste from one or more examples into a 
VI that you create. Browse or search the example VIs with the NI Example 
Finder by selecting Help»Find Examples.

Refer to NI Developer Zone at ni.com/zone for additional example VIs.

You also can access examples using the Open example and Browse 
related examples buttons located at the bottom of certain VI and function 
reference topics in the LabVIEW Help. Click the Open example button to 
open the example VI to which the topic refers. Click the Browse related 
examples button to open the NI Example Finder and display related 
example VIs.

You also can right-click a VI or function on the block diagram or on a 
pinned palette and select Examples from the shortcut menu to display a 
help topic with links to examples for that VI or function.

LabVIEW Tools for DAQ Configuration (Windows)
Use Measurement & Automation Explorer (MAX) to help you configure 
measurement devices. Select Tools»Measurement & Automation 
Explorer to launch MAX and configure National Instruments hardware 
and software. You install MAX from the National Instruments Device 
Drivers CD.

Refer to the Controlling Instruments book on the Contents tab in the 
LabVIEW Help for information about controlling other types of 
instruments.

Use the DAQ Assistant to graphically configure channels or common 
measurement tasks. The DAQ Assistant Express VI does not appear on the 
Functions palette unless you have NI-DAQmx installed. Refer to the DAQ 



Chapter 1 Introduction to LabVIEW

© National Instruments Corporation 1-5 LabVIEW Fundamentals

Getting Started Guide for more information about installing NI-DAQmx. 
You can access the DAQ Assistant in the following ways:

• Place the DAQ Assistant Express VI on the block diagram.

• Right-click a DAQmx global channel control and select New Channel 
(DAQ Assistant) from the shortcut menu. Right-click a DAQmx task 
name control and select New Task (DAQ Assistant) from the shortcut 
menu. Right-click a DAQmx scale name control and select New Scale 
(DAQ Assistant) from the shortcut menu.

• Launch Measurement & Automation Explorer and select Data 
Neighborhood or Scales from the Configuration tree. Click the 
Create New button. Configure an NI-DAQmx channel, task, or scale.



© National Instruments Corporation 2-1 LabVIEW Fundamentals

2
Introduction to Virtual 
Instruments

LabVIEW programs are called virtual instruments, or VIs, because their 
appearance and operation imitate physical instruments, such as 
oscilloscopes and multimeters. Every VI uses functions that manipulate 
input from the user interface or other sources and display that information 
or move it to other files or other computers.

A VI contains the following three components:

• Front panel—Serves as the user interface.

• Block diagram—Contains the graphical source code that defines the 
functionality of the VI.

• Icon and connector pane—Identifies the interface to the VI so that 
you can use the VI in another VI. A VI within another VI is called a 
subVI. A subVI corresponds to a subroutine in text-based 
programming languages.



Chapter 2 Introduction to Virtual Instruments

LabVIEW Fundamentals 2-2 ni.com

Front Panel
The front panel is the user interface of the VI. The following figure shows 
an example of a front panel.

You build the front panel using controls and indicators, which are the 
interactive input and output terminals of the VI, respectively. Controls are 
knobs, push buttons, dials, and other input mechanisms. Indicators are 
graphs, LEDs, and other output displays. Controls simulate instrument 
input mechanisms and supply data to the block diagram of the VI. 
Indicators simulate instrument output mechanisms and display data the 
block diagram acquires or generates.

Refer to Chapter 4, Building the Front Panel, for more information about 
the front panel.

Block Diagram
After you build the front panel, you add code using graphical 
representations of functions to control the front panel objects. The block 
diagram contains this graphical source code, also known as G code or block 
diagram code. Front panel objects appear as terminals on the block 
diagram.

Refer to Chapter 5, Building the Block Diagram, for more information 
about the block diagram.



Chapter 2 Introduction to Virtual Instruments

© National Instruments Corporation 2-3 LabVIEW Fundamentals

The following VI contains several primary block diagram 
objects—terminals, functions, and wires.

Terminals
The terminals represent the data type of the control or indicator. You can 
configure front panel controls or indicators to appear as icon or data type 
terminals on the block diagram. By default, front panel objects appear as 
icon terminals. For example, a knob icon terminal, shown as follows, 
represents a knob on the front panel.

The DBL at the bottom of the terminal represents a data type of 
double-precision, floating-point numeric. A DBL terminal, shown as 
follows, represents a double-precision, floating-point numeric control.



Chapter 2 Introduction to Virtual Instruments

LabVIEW Fundamentals 2-4 ni.com

Refer to the Control and Indicator Data Types section of Chapter 5, 
Building the Block Diagram, for more information about data types in 
LabVIEW.

Terminals are entry and exit ports that exchange information between the 
front panel and block diagram. Data you enter into the front panel controls 
(a and b in the previous figure) enter the block diagram through the control 
terminals. The data then enter the Add and Subtract functions. When the 
Add and Subtract functions complete their calculations, they produce new 
data values. The data values flow to the indicator terminals, where they 
update the front panel indicators (a+b and a-b in the previous figure).

Nodes
Nodes are objects on the block diagram that have inputs and/or outputs and 
perform operations when a VI runs. They are analogous to statements, 
operators, functions, and subroutines in text-based programming 
languages. The Add and Subtract functions in the previous figure are 
examples of nodes.

Refer to the Block Diagram Nodes section of Chapter 5, Building the Block 
Diagram, for more information about nodes.

Wires
You transfer data among block diagram objects through wires. In the 
previous figure, wires connect the control and indicator terminals to the 
Add and Subtract functions. Each wire has a single data source, but you can 
wire it to many VIs and functions that read the data. Wires are different 
colors, styles, and thicknesses, depending on their data types. A broken 
wire appears as a dashed black line with a red X in the middle. Broken wires 
occur for a variety of reasons, such as when you try to wire two objects with 
incompatible data types.

Refer to the Using Wires to Link Block Diagram Objects section of 
Chapter 5, Building the Block Diagram, for more information about wires.



Chapter 2 Introduction to Virtual Instruments

© National Instruments Corporation 2-5 LabVIEW Fundamentals

Structures
Structures are graphical representations of the loops and case statements of 
text-based programming languages. Use structures on the block diagram to 
repeat blocks of code and to execute code conditionally or in a specific 
order.

Refer to Chapter 8, Loops and Structures, for more information about 
structures.

Icon and Connector Pane
After you build a VI front panel and block diagram, build the icon and the 
connector  pane so you can use the VI as a subVI. The icon and connector 
pane correspond to the function prototype in text-based programming 
languages. Every VI displays an icon, such as the one shown as follows, 
in the upper right corner of the front panel and block diagram windows.

An icon is a graphical representation of a VI. It can contain text, images, or 
a combination of both. If you use a VI as a subVI, the icon identifies the 
subVI on the block diagram of the VI. You can double-click the icon to 
customize or edit it.

Refer to the Creating an Icon section of Chapter 7, Creating VIs and 
SubVIs, for more information about icons.

You also need to build a connector pane, shown as follows, to use the VI as 
a subVI.

The connector pane is a set of terminals that correspond to the controls and 
indicators of that VI, similar to the parameter list of a function call in 
text-based programming languages. The connector pane defines the inputs 
and outputs you can wire to the VI so you can use it as a subVI. A connector 
pane receives data at its input terminals and passes the data to the block 
diagram code through the front panel controls and receives the results at its 
output terminals from the front panel indicators.



Chapter 2 Introduction to Virtual Instruments

LabVIEW Fundamentals 2-6 ni.com

Refer to the Building the Connector Pane section of Chapter 7, Creating 
VIs and SubVIs, for more information about setting up connector panes.

Note Try  not to assign more than 16 terminals to a VI. Too many terminals can reduce the 
readability and usability of the VI.

Using and Customizing VIs and SubVIs
After you build a VI and create its icon and connector pane, you can use it 
as a subVI.

Refer to the Creating SubVIs section of Chapter 7, Creating VIs and 
SubVIs, for more information about subVIs.

You can customize the appearance and behavior of a VI.

Refer to the Customizing VIs section of Chapter 7, Creating VIs and 
SubVIs, for more information about customizing a VI. 



© National Instruments Corporation 3-1 LabVIEW Fundamentals

3
LabVIEW Environment

Use the LabVIEW palettes, tools, and menus to build the front panels and 
block diagrams of VIs. LabVIEW includes three palettes: the Controls 
palette, the Functions palette, and the Tools palette. LabVIEW also 
includes the Getting Started window, the Context Help window, the 
Project Explorer window, and the Navigation window. You can 
customize the Controls and Functions palettes, and you can set several 
work environment options.

Getting Started Window
The Getting Started window appears when you launch LabVIEW. Use 
this window to create new VIs, select among the most recently opened 
LabVIEW files, find examples, and launch the LabVIEW Help. You also 
can access information and resources to help you learn about LabVIEW, 
such as specific manuals, help topics, and resources on the National 
Instruments Web site, ni.com.

The Getting Started window disappears when you open an existing file or 
create a new file. The Getting Started window appears when you close all 
open front panels and block diagrams. You also can display the window by 
selecting View»Getting Started Window.

Controls Palette
The Controls palette is available only on the front panel. The Controls 
palette contains the controls and indicators you use to create the front panel. 
The controls and indicators are located on subpalettes based on the types of 
controls and indicators.

Refer to the Front Panel Controls and Indicators section of Chapter 4, 
Building the Front Panel, for more information about the types of controls 
and indicators.



Chapter 3 LabVIEW Environment

LabVIEW Fundamentals 3-2 ni.com

Select View»Controls Palette or right-click the front panel workspace to 
display the Controls palette. LabVIEW retains the Controls palette 
position and size so when you restart LabVIEW, the palette appears in the 
same position and has the same size. You can change the contents of the 
Controls palette.

Refer to the Customizing the Controls and Functions Palettes section of 
this chapter for more information about customizing the Controls palette.

Functions Palette
The Functions palette is available only on the block diagram. The 
Functions palette contains the VIs and functions you use to build the block 
diagram. The VIs and functions are located on subpalettes based on the 
types of VIs and functions.

Select View»Functions Palette or right-click the block diagram 
workspace to display the Functions palette. LabVIEW retains the 
Functions palette position and size so when you restart LabVIEW, the 
palette appears in the same position and has the same size. You can change  
the contents of the Functions palette.

Refer to the Customizing the Controls and Functions Palettes section of 
this chapter for more information about customizing the Functions palette.

Navigating the Controls and Functions Palettes
Click an object on the palette to place the object on the cursor so you can 
place it on the front panel or block diagram. You also can right-click a VI 
icon on the palette and select Open VI from the shortcut menu to open 
the VI.

Click the black arrows on the left side of the Controls or Functions palette 
to expand or collapse subpalettes.  These arrows appear only if you set the 
palette format to Category (Standard) or Category (Icons and Text).



Chapter 3 LabVIEW Environment

© National Instruments Corporation 3-3 LabVIEW Fundamentals

Use the following buttons on the Controls and Functions palette toolbars 
to navigate the palettes, to configure the palettes, and to search for controls, 
VIs, and functions.

Tools Palette
The Tools palette is available on the front panel and the block diagram. 
A tool is a special operating mode of the mouse cursor. The cursor 
corresponds to the icon of the tool you select on the palette. Use the tools 
to operate and modify front panel and block diagram objects.

If automatic tool selection is enabled and you move the cursor over objects 
on the front panel or block diagram, LabVIEW automatically selects the 
corresponding tool from the Tools palette.

Select View»Tools Palette to display the Tools palette. LabVIEW retains 
the Tools palette position so when you restart LabVIEW, the palette 
appears in the same position.

Tip Press the <Shift> key and right-click to display a temporary version of the Tools 
palette at the location of the cursor.

Up—Takes you up one level in the palette hierarchy. Click this button and hold the 
mouse button down to display a shortcut menu that lists each subpalette in the path to 
the current subpalette. Select a subpalette name in the shortcut menu to navigate to the 
subpalette. This button appears only if you set the palette format to Icons, Icons and 
Text, or Text.

Search—Changes the palette to search mode so you can perform text-based searches 
to locate controls, VIs, or functions on the palettes. While a palette is in search mode, 
click the Return button to exit search mode and return to the palette.

View—Provides options for selecting a format for the current palette, showing and 
hiding categories for all palettes, and sorting items in the Text and Tree formats 
alphabetically. Select Options from the shortcut menu to display the 
Controls/Functions Palettes page of the Options dialog box, in which you can select 
a format for all palettes. This button appears only if you click the thumbtack in the 
upper left corner of a palette to pin the palette.

Restore Palette Size—Resizes the palette to its default size. This button appears only 
if you resize the Controls or Functions palette.



Chapter 3 LabVIEW Environment

LabVIEW Fundamentals 3-4 ni.com

Menus and Toolbars
Use the menu and toolbar items to operate and modify front panel and block 
diagram objects.

Menus
The menus at the top of a VI window contain items common to other 
applications, such as Open, Save, Copy, and Paste, and other items 
specific to LabVIEW. Some menu items also list keyboard shortcuts.

(Mac OS) The menus appear at the top of the screen.

(Windows and Linux) The menus display only the most recently used items 
by default. Click the arrows at the bottom of a menu to display all items. 
You can display all menu items by default by selecting Tools»Options, 
selecting Environment from the Category list, and removing the 
checkmark from the Use abridged menus checkbox. 

Note Some menu items are unavailable while a VI runs.

Shortcut Menus
All LabVIEW objects have associated shortcut menus. As you create a VI, 
use the shortcut menu items to change the appearance or behavior of front 
panel and block diagram objects. To access the shortcut menu, right-click 
the object.

(Mac OS) Press <Command>-click to perform the same action as right-click.

Shortcut Menus in Run Mode
When a VI is running, or is in run mode, all front panel objects have an 
abridged set of shortcut menu items by default. Use the abridged shortcut 
menu items to cut, copy, or paste the contents of the object, to set the object 
to its default value, or to read the description of the object. 

Some of the more complex controls have additional options. For example, 
the knob shortcut menu includes items to add a needle and to change the 
display of scale markers.



Chapter 3 LabVIEW Environment

© National Instruments Corporation 3-5 LabVIEW Fundamentals

VI Toolbar
Use the buttons on the VI toolbar to run VIs, pause VIs, abort VIs, debug 
VIs, configure fonts, and align, group, and distribute objects.

Refer to Chapter 6, Running and Debugging VIs, for more information 
about some of the toolbar buttons, or refer to the LabVIEW Help for a 
complete list and descriptions of the toolbar buttons.

Project Explorer Window Toolbars
Use the buttons on the Standard, Project, Build, and Source Control 
toolbars to perform operations in a LabVIEW project. The toolbars are 
available at the top of the Project Explorer window. You might need to 
expand the Project Explorer window to view all of the toolbars.

Refer to the Project Explorer Window section of this chapter for more 
information about LabVIEW projects.

Context Help Window
The Context Help window displays basic information about LabVIEW 
objects when you move the cursor over each object. Objects with context 
help information include VIs, functions, constants, structures, palettes, 
properties, methods, events, dialog box components, and items in the 
Project Explorer window. You also can use the Context Help window to 
determine exactly where to connect wires to a VI or function.

Refer to the Using Wires to Link Block Diagram Objects section of 
Chapter 5, Building the Block Diagram, for more information about using 
the Context Help window to wire objects.

Select Help»Show Context Help to display the Context Help window. 
You also can display the Context Help window by clicking the Show 
Context Help Window button on the toolbar, shown as follows.

(Windows) You also can display the window by pressing the <Ctrl-H> keys. 
(Mac OS) Press the <Command-H> keys. (Linux) Press the <Alt-H> keys.



Chapter 3 LabVIEW Environment

LabVIEW Fundamentals 3-6 ni.com

The Context Help window resizes to accommodate each object 
description. You also can resize the Context Help window to set its 
maximum size. LabVIEW retains the Context Help window position and 
size so when you restart LabVIEW, the window appears in the same 
position and has the same maximum size.

If a corresponding LabVIEW Help topic exists for an object the Context 
Help window describes, a blue Detailed help link appears in the Context 
Help window. Also, the Detailed help button in the Context Help window, 
shown as follows, is enabled. Click the link or the button to display more 
information about the object.

Project Explorer Window
Use the Project Explorer window to create and edit LabVIEW projects. 
Use projects to group together LabVIEW files and non-LabVIEW files, 
create build specifications, and deploy or download files to targets. Select 
File»New Project to display the Project Explorer window.

Navigation Window
The Navigation window displays an overview of the active front panel in 
edit mode or the active block diagram. Use the Navigation window to 
navigate large front panels or block diagrams. Click an area of the image in 
the Navigation window to display that area in the front panel or block 
diagram window. You also can click and drag the image in the Navigation 
window to scroll through the front panel or block diagram. Portions of the 
front panel or block diagram that are not visible appear dimmed in the 
Navigation window.

Select View»Navigation Window to display the Navigation window. 
(Windows) You also can display the window by pressing the <Ctrl-Shift-N> 
keys. (Mac OS) Press the <Command-Shift-N> keys. (Linux) Press the 
<Alt-Shift-N> keys.

Note The Navigation window is available only in the LabVIEW Full and Professional 
Development Systems.



Chapter 3 LabVIEW Environment

© National Instruments Corporation 3-7 LabVIEW Fundamentals

Resize the Navigation window to resize the image it displays. LabVIEW 
retains the Navigation window position and size so when you restart 
LabVIEW, the window appears in the same position and has the same size.

Customizing Your Work Environment
You can customize the Controls and Functions palettes, and you can use 
the Options dialog box to select a palette format and set other work 
environment options.

Customizing the Controls and Functions Palettes
You can customize the Controls and Functions palettes in the following 
ways:

• Edit a palette set to rearrange the built-in palettes, create and move 
subpalettes, and so on using the Edit Controls and Functions Palette 
Set dialog box. Select Tools»Advanced»Edit Palette Set to display 
the Edit Controls and Functions Palette Set dialog box. Right-click 
the palette you want to modify and select from the options on the 
shortcut menu.

• Add items on the Functions palette to the Favorites category. On a 
pinned Functions palette, right-click an object and select Add Item to 
Favorites from the shortcut menu. In the Category (Standard) and 
Category (Icons and Text) formats, you also can expand a palette to 
display a subpalette, right-click the title of the subpalette, and select 
Add Subpalette to Favorites from the shortcut menu. 

Setting Work Environment Options
Select Tools»Options to customize LabVIEW. Use the Options dialog 
box to set options for front panels, block diagrams, paths, performance and 
disk issues, the alignment grid, palettes, undo, debugging tools, colors, 
fonts, printing, the History window, and other LabVIEW features.

Use the Category list at the left side of the Options dialog box to select 
among the different categories of options.



© National Instruments Corporation 4-1 LabVIEW Fundamentals

4
Building the Front Panel

The front panel is the user interface of a VI. Generally, you design the front 
panel first and then design the block diagram to perform tasks on the inputs 
and outputs you create on the front panel.

Refer to Chapter 5, Building the Block Diagram, for more information 
about the block diagram.

You build the front panel with controls and indicators, which are the 
interactive input and output terminals of the VI, respectively. Controls are 
knobs, push buttons, dials, and other input mechanisms. Indicators are 
graphs, LEDs, and other output displays. Controls simulate instrument 
input mechanisms and supply data to the block diagram of the VI. 
Indicators simulate instrument output mechanisms and display data the 
block diagram acquires or generates.

Select View»Controls Palette to display the Controls palette and then 
select controls and indicators from the Controls palette and place them on 
the front panel.

Front Panel Controls and Indicators
Use the front panel controls and indicators located on the Controls palette 
to build the front panel. Types of controls and indicators include numeric 
controls and indicators such as slides and knobs, graphs, charts, Boolean 
controls and indicators such as buttons and switches, strings, paths, arrays, 
clusters, listboxes, tree controls, tables, ring controls, enumerated type 
controls, containers, and so on.



Chapter 4 Building the Front Panel

LabVIEW Fundamentals 4-2 ni.com

Styles of Controls and Indicators
Front panel controls and indicators can appear in modern, classic, or system 
style.

Modern and Classic Controls and Indicators
Many front panel objects have a high-color appearance. Set the monitor to 
display at least 16-bit color for optimal appearance of the objects.

The controls and indicators located on the Modern palette also have 
corresponding low-color objects. Use the controls and indicators located on 
the Classic palette to create VIs for 256-color and 16-color monitor 
settings.

System Controls and Indicators
Use the system controls and indicators located on the System palette in 
dialog boxes you create. The system controls and indicators are designed 
specifically for use in dialog boxes and include ring and spin controls, 
numeric slides, progress bars, scroll bars, listboxes, tables, string and path 
controls, tab controls, tree controls, buttons, checkboxes, radio buttons, and 
an opaque label that automatically matches the background color of its 
parent. These controls differ from those that appear on the front panel only 
in terms of appearance. These controls appear in the colors you have set up 
for your system.

Because the system controls change appearance depending on which 
platform you run the VI, the appearance of controls in VIs you create is 
compatible on all LabVIEW platforms. When you run the VI on a different 
platform, the system controls adapt their color and appearance to match the 
standard dialog box controls for that platform.

Refer to the Designing Dialog Boxes section of this chapter for information 
about designing dialog boxes.

Numeric Displays, Slides, Scroll Bars, Knobs, Dials, and Time Stamps
Use the numeric objects located on the Numeric and Classic Numeric 
palettes to create slides, scroll bars, knobs, dials, and numeric displays. The 
palette also includes color boxes and a color ramp for setting color values 
and time stamps for setting time and date values. Use the numeric objects 
to enter and display numeric data.



Chapter 4 Building the Front Panel

© National Instruments Corporation 4-3 LabVIEW Fundamentals

Numeric Controls and Indicators
Numeric controls and indicators are the simplest way to enter and display 
numeric data. You can resize these front panel objects horizontally to 
accommodate more digits. Change the value of a numeric control using any 
of the following ways:

• Use the Operating tool or the Labeling tool to click inside the digital 
display window and enter numbers from the keyboard.

• Use the Operating tool to click the increment or decrement arrow 
buttons of a numeric control.

• Use the Operating tool or the Labeling tool to place the cursor to the 
right of the digit you want to change and press the up or down arrow 
keys.

By default, LabVIEW displays and stores numbers like a calculator. A 
numeric control or indicator displays up to six digits before automatically 
switching to exponential notation. You can configure the number of digits 
LabVIEW displays before switching to exponential notation by 
right-clicking the numeric object and selecting Format and Precision 
from the shortcut menu to display the Format and Precision page of the 
Numeric Properties dialog box.

Slide Controls and Indicators
Slide controls and indicators are numeric objects with a scale. The slide 
controls and indicators include vertical and horizontal slides, a tank, and a 
thermometer. Change the value of a slide control using either of the 
following ways:

• Use the Operating tool to click or drag the slider to a new position.

• Use the digital display to enter data just as you do for numeric controls 
and indicators.

Slide controls or indicators can display more than one value. Right-click 
the object and select Add Slider from the shortcut menu to add more 
sliders. The data type of a control with multiple sliders is a cluster that 
contains each of the numeric values.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings, 
Arrays, and Clusters, for more information about clusters.



Chapter 4 Building the Front Panel

LabVIEW Fundamentals 4-4 ni.com

Scroll Bar Controls and Indicators
Scroll bar controls, similar to slide controls, are numeric objects you can 
use to scroll data. The scroll bar controls include vertical and horizontal 
scroll bars. Change the value of a scroll bar by using the Operating tool to 
click or drag the square scroll box to a new position, by clicking the 
increment and decrement arrows, or by clicking the spaces between the 
scroll box and the arrows.

Rotary Controls and Indicators
The rotary controls and indicators include knobs, dials, gauges, and meters. 
The rotary objects operate similarly to the slide controls and indicators 
because they are numeric objects with a scale. Change the value of a rotary 
control using either of the following ways:

• Use the Operating tool to click or drag the needle to a new position.

• Use the digital display to enter data just as you do for numeric controls 
and indicators.

Rotary controls or indicators can display more than one value. Right-click 
the object and select Add Needle to add new needles. The data type of a 
control with multiple needles is a cluster that contains each of the numeric 
values.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings, 
Arrays, and Clusters, for more information about clusters.

Time Stamp Control and Indicator
Use the time stamp control and indicator to send and retrieve a time and 
date value to or from the block diagram. You can change the value of the 
time stamp control using any of the following ways:

• Right-click the control and select Format & Precision from the 
shortcut menu.

• Click the Time/Date Browse button, shown as follows, to display the 
Set Time and Date dialog box. 



Chapter 4 Building the Front Panel

© National Instruments Corporation 4-5 LabVIEW Fundamentals

• Right-click the control and select Data Operations»Set Time and 
Date from the shortcut menu to display the Set Time and Date dialog 
box.

• Right-click the control and select Data Operations»Set Time to Now 
from the shortcut menu.

Graphs and Charts
Use the graph controls and indicators on the Graph and Classic Graph 
palettes to plot numeric data in graph or chart form. 

Refer to Chapter 10, Graphs and Charts, for more information about using 
graphs and charts in LabVIEW.

Buttons, Switches, and Lights
Use the Boolean controls and indicators located on the Boolean and 
Classic Boolean palettes to create buttons, switches, and lights. Use 
Boolean controls and indicators to enter and display Boolean 
(TRUE/FALSE) values. For example, if you are monitoring the 
temperature of an experiment, you can place a Boolean warning light on the 
front panel to indicate when the temperature exceeds a certain level.

Boolean controls have six types of mechanical action that allow you to 
customize Boolean objects to create front panels that more closely 
resemble the behavior of physical instruments. Use the shortcut menu to 
customize the appearance of Boolean objects and how they behave when 
you click them.

Radio Buttons Controls
Use the radio buttons control to give users a list of items from which they 
can select only one item at a time. If you want to give users the option to 
select none or one item, right-click the control and select Allow No 
Selection from the shortcut menu to place a checkmark next to the menu 
item.

Because the data type of a radio buttons control is an enumerated type, you 
can use the radio buttons control to select the cases of a Case structure.

Refer to the Enumerated Type Controls section of this chapter for more 
information about enumerated type controls. Refer to the Case Structures 
section of Chapter 8, Loops and Structures, for more information about 
Case structures.



Chapter 4 Building the Front Panel

LabVIEW Fundamentals 4-6 ni.com

Refer to the Radio Buttons Control VI and the Radio Buttons with Event 
Structure VI in the labview\examples\general\controls\
booleans.llb for examples of using a radio buttons control.

Text Entry Boxes, Labels, and Path Displays
Use the string and path controls and indicators on the String & Path and 
Classic String & Path palettes to create text entry boxes and labels and to 
enter or return the location of a file or directory.

String Controls and Indicators
Use the Operating or Labeling tool to enter or edit text in a string control 
on the front panel. By default, new or changed text does not pass to the 
block diagram until you terminate the edit session. At run time, you 
terminate the edit session by clicking elsewhere on the panel, changing to 
a different window, clicking the Enter button on the toolbar, or pressing 
the <Enter> key on the numeric keypad. Pressing the <Enter> key on the 
keyboard enters a carriage return.

Right-click a string control or indicator to select a display type for the text 
in the control or indicator, such as password display or hex display.

Refer to the Strings on the Front Panel section of Chapter 9, Grouping 
Data Using Strings, Arrays, and Clusters, for more information about 
string display types.

Combo Box Controls
Use the combo box control to create a list of strings you can cycle through 
on the front panel. A combo box control is similar to a text or menu ring 
control. However, the value and data type of a combo box control are 
strings instead of numbers as with ring controls.

Refer to the Ring Controls section of this chapter for more information 
about ring controls.

Refer to the Case Structures section of Chapter 8, Loops and Structures, for 
more information about Case structures.



Chapter 4 Building the Front Panel

© National Instruments Corporation 4-7 LabVIEW Fundamentals

Path Controls and Indicators
Use path controls and indicators to enter or return the location of a file or 
directory. (Windows and Mac OS) You also can drag a path, folder, or file 
from Windows Explorer and place it in a path control if dropping is enabled 
during run time.

Path controls and indicators work similarly to string controls and 
indicators, but LabVIEW formats the path using the standard syntax for the 
platform you are using.

Array, Matrix, and Cluster Controls and Indicators
Use the array, matrix, and cluster controls and indicators located on the 
Array, Matrix & Cluster and Classic Array, Matrix & Cluster palettes 
to create arrays, matrices, and clusters of other controls and indicators. 
Arrays group data elements of the same type. Clusters group data elements 
of mixed types. Matrices group rows or columns of real or complex scalar 
data for some math operations, such as linear algebra operations.

Refer to the Grouping Data with Arrays and Clusters section of Chapter 9, 
Grouping Data Using Strings, Arrays, and Clusters, for more information 
about arrays and clusters.

Listboxes, Tree Controls, and Tables
Use the listbox controls located on the List & Table and Classic List & 
Table palettes to give users a list of items from which to select. 

Listboxes
You can configure listboxes to accept single or multiple selections. Use the 
multicolumn listbox to display more information about each item, such as 
the size of the item and the date it was created.

Tree Controls
Use the tree control to give users a hierarchical list of items from which to 
select. You organize the items you enter in the tree control into groups of 
items, or nodes. Click the expand symbol next to a node to expand it and 
display all the items in that node. You also click the symbol next to the node 
to collapse the node.



Chapter 4 Building the Front Panel

LabVIEW Fundamentals 4-8 ni.com

Note You can create and edit tree controls only in the LabVIEW Full and Professional 
Development Systems. If a VI contains a tree control, you can run the VI in all LabVIEW 
packages, but you cannot configure the control in the Base Package.

Refer to the Directory Hierarchy in Tree Control VI in the labview\
examples\general\controls\Directory Tree Control.llb for 
an example of using a tree control.

Tables
Use the table control to create a table on the front panel.

Refer to the Tables section of Chapter 9, Grouping Data Using Strings, 
Arrays, and Clusters, for more information about using table controls.

Ring and Enumerated Type Controls and Indicators
Use the ring and enumerated type controls and indicators located on the 
Ring & Enum and Classic Ring & Enum palettes to create a list of strings 
you can cycle through.

Ring Controls
Ring controls are numeric objects that associate numeric values with 
strings or pictures. Ring controls appear as pull-down menus that users can 
cycle through to make selections.

Ring controls are useful for selecting mutually exclusive items, such as 
trigger modes. For example, use a ring control for users to select from 
continuous, single, and external triggering.

Enumerated Type Controls
Use enumerated type controls to give users a list of items from which to 
select. An enumerated type control, or enum, is similar to a text or menu 
ring control. However, the data type of an enumerated type control includes 
information about the numeric values and the string labels in the control. 
The data type of a ring control is numeric.



Chapter 4 Building the Front Panel

© National Instruments Corporation 4-9 LabVIEW Fundamentals

Container Controls
Use the container controls located on the Containers and the Classic 
Containers palettes to group controls and indicators or to display the front 
panel of another VI on the front panel of the current VI. (Windows) You also 
can use container controls to display .NET and ActiveX objects on the front 
panel.

Refer to the .NET and ActiveX Controls (Windows) section of this chapter 
for more information about .NET and ActiveX controls.

Tab Controls
Use tab controls to overlap front panel controls and indicators in a smaller 
area. A tab control consists of pages and tabs. Place front panel objects on 
each page of a tab control and use the tab as the selector for displaying 
different pages.

Tab controls are useful when you have several front panel objects that are 
used together or during a specific phase of operation. For example, you 
might have a VI that requires the user to first configure several settings 
before a test can start, then allows the user to modify aspects of the test as 
it progresses, and finally allows the user to display and store only pertinent 
data.

On the block diagram, the tab control is an enumerated type control by 
default. Terminals for controls and indicators placed on the tab control 
appear as any other block diagram terminal.

Refer to the Enumerated Type Controls section of this chapter for more 
information about enumerated type controls.

Subpanel Controls
Use the subpanel control to display the front panel of another VI on the 
front panel of the current VI. For example, you can use a subpanel control 
to design a user interface that behaves like a wizard. Place the Back and 
Next buttons on the front panel of the top-level VI and use a subpanel 
control to load different front panels for each step of the wizard.

Note You can create and edit subpanel controls only in the LabVIEW Full and 
Professional Development Systems. If a VI contains a subpanel control, you can run the VI 
in all LabVIEW packages, but you cannot configure the control in the Base Package.



Chapter 4 Building the Front Panel

LabVIEW Fundamentals 4-10 ni.com

Refer to the labview\examples\general\controls\subpanel.llb 
for examples of using subpanel controls.

I/O Name Controls and Indicators
Use the I/O name controls and indicators on the I/O and Classic I/O 
palettes to pass DAQ channel names, VISA resource names, and IVI 
logical names you configure to I/O VIs to communicate with an instrument 
or a DAQ device.

I/O name constants are located on the Functions palette. A constant is a 
terminal on the block diagram that supplies fixed data values to the block 
diagram.

Note All I/O name controls or constants are available on all platforms. This allows you to 
develop I/O VIs on any platform that can communicate with devices that are platform 
specific. However, if you try to run a VI with a platform-specific I/O control on a platform 
that does not support that device, you will receive an error.

(Windows) Use Measurement & Automation Explorer, available from the 
Tools menu, to configure DAQ channel names, VISA resource names, and 
IVI logical names.

(Mac OS and Linux) Use the configuration utilities for your instrument to 
configure VISA resource names and IVI logical names. Refer to the 
documentation for your instrument for more information about the 
configuration utilities.

Waveform Control
Use the waveform control to manipulate individual data elements of a 
waveform. The waveform control carries the data, start time, and delta t of 
a waveform.

Refer to the Waveform Data Type section of Chapter 10, Graphs and 
Charts, for more information about the waveform data type.

Digital Waveform Control
Use the digital waveform control to manipulate the individual elements of 
a digital waveform.

Refer to the Digital Waveform Data Type section of Chapter 10, Graphs 
and Charts, for more information about the digital waveform data type.



Chapter 4 Building the Front Panel

© National Instruments Corporation 4-11 LabVIEW Fundamentals

Digital Data Control
The digital data control displays digital data arranged in rows and columns. 
Use the digital data control to build digital waveforms or to display digital 
data extracted from a digital waveform. Wire the digital waveform data 
control to a digital data indicator to view the samples and signals of a digital 
waveform.

References to Objects or Applications
Use the reference number controls located on the Refnum and Classic 
Refnum palettes to work with files, directories, devices, and network 
connections. Use the control refnum to pass front panel object information 
to subVIs.

A reference number, or refnum, is a unique identifier for an object, such as 
a file, device, or network connection.When you open a file, device, or 
network connection, LabVIEW creates a refnum associated with that file, 
device, or network connection. All operations you perform on open files, 
devices, or network connections use the refnums to identify each object. 
Use a refnum control to pass a refnum into or out of a VI. For example, use 
a refnum control to modify the contents of the file that a refnum is 
referencing without closing and reopening the file.

Because a refnum is a temporary pointer to an open object, it is valid only 
for the period during which the object is open. If you close the object, 
LabVIEW disassociates the refnum with the object, and the refnum 
becomes obsolete. If you open the object again, LabVIEW creates a new 
refnum that is different from the first refnum. LabVIEW allocates memory 
for an object that is associated with a refnum. Close the refnum to release 
the object from memory.

LabVIEW remembers information associated with each refnum, such as 
the current location for reading from or writing to the object and the degree 
of user access, so you can perform concurrent but independent operations 
on a single object. If a VI opens an object multiple times, each open 
operation returns a different refnum. LabVIEW automatically closes 
refnums for you when a VI finishes running, but it is a good programming 
practice to close refnums as soon as you are finished with them to most 
efficiently use memory and other resources. Close refnums in the opposite 
order that you opened them. For example, if you obtain a refnum to object 
A and invoke a method on object A to obtain a refnum to object B, close 
the refnum to object B first and then close the refnum to object A.



Chapter 4 Building the Front Panel

LabVIEW Fundamentals 4-12 ni.com

.NET and ActiveX Controls (Windows)
Use the .NET and ActiveX controls located on the .NET & ActiveX palette 
to manipulate common .NET or ActiveX controls. You can add additional 
.NET or ActiveX controls to this palette for later use. Select Tools».NET 
& ActiveX»Add .NET Controls to Palette or Tools».NET & ActiveX»
Add ActiveX Controls to Palette to convert a set of .NET or ActiveX 
controls, respectively, to custom controls and add them to the .NET & 
ActiveX palette.

Note Creating and communicating with .NET objects requires the .NET Framework 1.1 
Service Pack 1 or later. National Instruments also strongly recommends that you use .NET 
objects only in  LabVIEW projects.

Configuring Front Panel Objects
Use Properties dialog boxes or shortcut menus to configure how controls 
and indicators appear or behave on the front panel. Use Properties dialog 
boxes when you want to configure a front panel control or indicator using 
a dialog box that includes context help and in which you can set several 
properties at the same time for an object. Use shortcut menus to quickly 
configure common control and indicator properties. The options available 
in Properties dialog boxes and shortcut menus differ for different front 
panel objects. Any option you set using a shortcut menu is reflected in the 
Properties dialog box, and any option you set using the Properties dialog 
box is reflected in the shortcut menu. 

Right-click a control or indicator on the front panel and select Properties 
from the shortcut menu to access the Properties dialog box for that object. 
You cannot access Properties dialog boxes for a control or indicator while 
a VI runs.

You also can create a custom control or indicator to extend the available 
set of front panel objects. Right-click the control and select Advanced»
Customize from the shortcut menu to customize a control or indicator. 
You can save a custom control or indicator you created in a directory or 
LLB and use the custom control or indicator on other front panels.



Chapter 4 Building the Front Panel

© National Instruments Corporation 4-13 LabVIEW Fundamentals

Showing and Hiding Optional Elements
Front panel controls and indicators have optional elements you can show or 
hide, such as labels, captions, and digital displays. Set the visible elements 
for the control or indicator on the Appearance page of the Properties 
dialog box for the front panel object. You also can set the visible elements 
by right-clicking an object, selecting Visible Items from the shortcut menu, 
and selecting among the available options.

Changing Controls to Indicators and Indicators to Controls
LabVIEW initially configures objects in the Controls palette as controls or 
indicators based on their typical use. For example, if you place a toggle 
switch on the front panel, it appears as a control because a toggle switch is 
usually an input mechanism. If you place an LED on the front panel, it 
appears as an indicator because an LED is usually an output device.

Some palettes contain a control and an indicator for the same type or class 
of object. For example, the Numeric palette contains a numeric control and 
a numeric indicator because you can have a numeric input or a numeric 
output.

You can change a control to an indicator by right-clicking the object and 
selecting Change to Indicator from the shortcut menu, and you can 
change an indicator to a control by right-clicking the object and selecting 
Change to Control from the shortcut menu.

Replacing Front Panel Objects
You can replace a front panel object with a different control or indicator. 
When you right-click an object and select Replace from the shortcut menu, 
a temporary Controls palette appears. Select a control or indicator from the 
temporary Controls palette to replace the current object on the front panel.

Configuring the Front Panel
You can customize the front panel by changing the color of front panel 
objects, by aligning and distributing front panel objects, and so on.



Chapter 4 Building the Front Panel

LabVIEW Fundamentals 4-14 ni.com

Coloring Objects
You can change the color of many objects but not all of them. You can 
change the color of most front panel objects and the front panel and block 
diagram workspaces.  You cannot change the color of system controls and 
indicators because these objects appear in the colors you have set up for 
your system.

Use the Coloring tool to right-click an object or workspace to change the 
color of front panel objects or the front panel and block diagram 
workspaces. You also can change the default colors for some objects by 
selecting Tools»Options and selecting Colors from the Category list.

Color can distract the user from important information so use color 
logically, sparingly, and consistently, if at all.

Aligning and Distributing Objects
Select Edit»Enable Panel Grid Alignment to enable the grid alignment 
on the front panel and align objects as you place them. Select Edit»Disable 
Panel Grid Alignment to disable the grid alignment and use the visible 
grid to align objects manually. You also can press the <Ctrl-#> keys to 
enable or disable the grid alignment. On French keyboards, press the 
<Ctrl-”> keys.

(Mac OS) Press the <Command-*> keys. (Linux) Press the <Alt-#> keys.

You also can use the alignment grid on the block diagram.

Select Tools»Options and select Alignment Grid from the Category list 
to hide or customize the grid.

To align objects after you place them, select the objects and select the Align 
Objects pull-down menu on the toolbar or select Edit»Align Items. To 
space objects evenly, select the objects and select the Distribute Objects 
pull-down menu on the toolbar or select Edit»Distribute Items.

Grouping and Locking Objects
Use the Positioning tool to select the front panel objects you want to group 
and lock together. Click the Reorder button on the toolbar and select 
Group or Lock from the pull-down menu. Grouped objects maintain their 
relative arrangement and size when you use the Positioning tool to move 



Chapter 4 Building the Front Panel

© National Instruments Corporation 4-15 LabVIEW Fundamentals

and resize them. Locked objects maintain their location on the front panel 
and you cannot delete them until you unlock them. You can set objects to 
be grouped and locked at the same time. Tools other than the Positioning 
tool work normally with grouped or locked objects.

Resizing Objects
You can change the size of most front panel objects. When you move the 
Positioning tool over a resizable object, resizing handles or circles appear 
at the points where you can resize the object. When you resize an object, 
the font size remains the same. Resizing a group of objects resizes all the 
objects within the group.

Some objects change size only horizontally or vertically when you resize 
them, such as digital numeric controls and indicators. Others keep the same 
proportions when you resize them, such as knobs. The Positioning cursor 
appears the same, but the dashed border that surrounds the object moves in 
only one direction. 

You can manually restrict the growth direction when you resize an object. 
To restrict the growth vertically or horizontally or to maintain the current 
proportions of the object, press the <Shift> key while you click and drag 
the resizing handles or circles. To resize an object around its center point, 
press the <Ctrl> key while you click and drag the resizing handles or 
circles.

(Mac OS) Press the <Option> key. (Linux) Press the <Alt> key.

To resize multiple objects to the same size, select the objects and select the 
Resize Objects pull-down menu on the toolbar. You can resize all the 
selected objects to the width or height of the largest or smallest object, and 
you can resize all the selected objects to a specific size in pixels.

Adding Space to the Front Panel without Resizing the Window
You can add space to the front panel without resizing the window. To 
increase the space between crowded or tightly grouped objects, press the 
<Ctrl> key and use the Positioning tool to click the front panel workspace. 
While holding the key combination, drag out a region the size you want to 
insert.

(Mac OS) Press the <Option> key. (Linux) Press the <Alt> key.

A rectangle marked by a dashed border defines where space will be 
inserted. Release the mouse button and the key to add the space.



Chapter 4 Building the Front Panel

LabVIEW Fundamentals 4-16 ni.com

Labeling
Use labels to identify objects on the front panel and block diagram.

LabVIEW includes two kinds of labels—owned labels and free labels. 
Owned labels belong to and move with a particular object and annotate that 
object only. You can move an owned label independently, but when you 
move the object that owns the label, the label moves with the object. You 
can hide owned labels, but you cannot copy or delete them independently 
of their owners. You can display a separate owned label called a unit label 
for numeric controls and indicators by right-clicking the numeric control or 
indicator and selecting Visible Items»Unit Label from the shortcut menu. 

Free labels are not attached to any object, and you can create, move, rotate, 
or delete them independently. Use them to annotate front panels and block 
diagrams.

Free labels are useful for documenting code on the block diagram and for 
listing user instructions on the front panel. Double-click an open space or 
use the Labeling tool to create free labels or to edit either type of label.

Text Characteristics
LabVIEW uses fonts already installed on your computer. Use the Text 
Settings pull-down menu on the toolbar to change the attributes of text.

The Text Settings pull-down menu contains the following built-in fonts:

• Application Font—Default font used for Controls and Functions 
palettes and text in new controls

• System Font—Used for menus

• Dialog Font—Used for text in dialog boxes

If you select objects or text before you make a selection from the Text 
Settings pull-down menu, the changes apply to everything you select. If 
you select nothing, the changes apply to the default font. Changing the 
default font does not change the font of existing labels. It affects only those 
labels you create from that point on.

When you transfer a VI that contains built-in fonts to another platform, the 
fonts correspond as closely as possible.

The Text Settings pull-down menu also has Size, Style, Justify, and Color 
submenu items.



Chapter 4 Building the Front Panel

© National Instruments Corporation 4-17 LabVIEW Fundamentals

Designing User Interfaces
If a VI serves as a user interface or a dialog box, front panel appearance and 
layout are important. Design the front panel so users can easily identify 
what actions to perform. You can design front panels that look similar to 
instruments or other devices.

Using Front Panel Controls and Indicators
Controls and indicators are the main components of the front panel. When 
you design the front panel, consider how users interact with the VI and 
group controls and indicators logically. If several controls are related, add a 
decorative border around them or put them in a cluster.Use the decorations 
located on the Decorations palette to group or separate objects on a front 
panel with boxes, lines, or arrows. These objects are for decoration only 
and do not display data.

Designing Dialog Boxes
Select File»VI Properties and select Window Appearance from the 
Category pull-down menu to hide the menu bar and scroll bars and to 
create VIs that look and behave like standard dialog boxes for each 
platform.

If a VI contains consecutive dialog boxes that appear in the same screen 
location, organize them so that the buttons in the first dialog box do not 
directly line up with the buttons in the next dialog box. Users might 
double-click a button in the first dialog box and unknowingly click a button 
in the subsequent dialog box. 

Use the system controls located on the System palette in dialog boxes you 
create.



© National Instruments Corporation 5-1 LabVIEW Fundamentals

5
Building the Block Diagram

After you build the front panel, you add code using graphical 
representations of functions to control the front panel objects. The block 
diagram contains this graphical source code, also known as G code or block 
diagram code.

Block Diagram Objects
Objects on the block diagram include terminals and nodes. You build block 
diagrams by connecting the objects with wires. The color and symbol of 
each terminal indicate the data type of the corresponding control or 
indicator. Constants are terminals on the block diagram that supply fixed 
data values to the block diagram.

Block Diagram Terminals
Front panel objects appear as terminals on the block diagram. Double-click 
a block diagram terminal to highlight the corresponding control or indicator 
on the front panel.

Terminals are entry and exit ports that exchange information between the 
front panel and block diagram. Data values you enter into the front panel 
controls enter the block diagram through the control terminals. During 
execution, the output data values flow to the indicator terminals, where they 
exit the block diagram, reenter the front panel, and appear in front panel 
indicators.

LabVIEW has control and indicator terminals, node terminals, constants, 
and specialized terminals on structures. You use wires to connect terminals 
and pass data to other terminals. Right-click a block diagram object and 
select Visible Items»Terminals from the shortcut menu to view the 
terminals. Right-click the object and select Visible Items»Terminals 
again to hide the terminals. This shortcut menu item is not available for 
expandable VIs and functions.

You can configure front panel controls or indicators to appear as icon or 
data type terminals on the block diagram. By default, front panel objects 



Chapter 5 Building the Block Diagram

LabVIEW Fundamentals 5-2 ni.com

appear as icon terminals. For example, a knob icon terminal, shown as 
follows, represents a knob control on the front panel.

The DBL at the bottom of the terminal represents a data type of 
double-precision, floating-point numeric. A DBL terminal, shown as 
follows, represents a double-precision, floating-point numeric control.

Right-click a terminal and remove the checkmark next to the View As Icon 
shortcut menu item to display the data type for the terminal. Use icon 
terminals to display the types of front panel objects on the block diagram, 
in addition to the data types of the front panel objects. Use data type 
terminals to conserve space on the block diagram.

Note Icon terminals are larger than data type terminals, so you might unintentionally 
obscure other block diagram objects when you convert a data type terminal to an icon 
terminal.

Control terminals have a thicker border than indicator terminals. Also, 
arrows appear on front panel terminals to indicate whether the terminal is a 
control or an indicator. An arrow appears on the right if the terminal is a 
control, and an arrow appears on the left if the terminal is an indicator.

Control and Indicator Data Types
Common control and indicator data types include floating-point numeric, 
integer numeric, time stamp, enumerated, Boolean, string, array, cluster, 
path, dynamic, waveform, refnum, and I/O name. Refer to the LabVIEW 
Help for the complete list of control and indicator data types with their 
symbols and uses.

The color and symbol of each terminal indicate the data type of the 
corresponding control or indicator. Many data types have a corresponding 
set of functions that can manipulate the data, such as the String functions 
on the String palette that correspond to the string data type.



Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-3 LabVIEW Fundamentals

Symbolic Numeric Values
Undefined or unexpected data invalidate all subsequent operations. 
Floating-point operations return the following two symbolic values that 
indicate faulty computations or meaningless results:

• NaN (not a number) represents a floating-point value that invalid 
operations produce, such as taking the square root of a negative 
number. 

• Inf (infinity) represents a floating-point value outside of the range for 
that data type. For example, dividing 1 by zero produces Inf.   

LabVIEW can return +Inf or –Inf. +Inf indicates the largest value 
possible for the data type and –Inf indicates the smallest value 
possible for the data type.

LabVIEW does not check for overflow or underflow conditions on integer 
values.

Constants
Constants are terminals on the block diagram that supply fixed data values 
to the block diagram. Universal constants are constants with fixed values, 
such as pi (π) and infinity (∞). User-defined constants are constants you 
define and edit before you run a VI.

Most constants are located at the bottom or top of their palettes.

Create a user-defined constant by right-clicking an input terminal of a VI 
or function and selecting Create»Constant from the shortcut menu.

Use the Operating or Labeling tool to click the constant and edit its value. 
If automatic tool selection is enabled, double-click the constant to switch to 
the Labeling tool and edit the value.

Block Diagram Nodes
Nodes are objects on the block diagram that have inputs and/or outputs and 
perform operations when a VI runs. They are analogous to statements, 
operators, functions, and subroutines in text-based programming 
languages. LabVIEW includes the following types of nodes:

• Functions—Built-in execution elements, comparable to an operator, 
function, or statement.

• SubVIs—VIs used on the block diagram of another VI, comparable to 
subroutines.



Chapter 5 Building the Block Diagram

LabVIEW Fundamentals 5-4 ni.com

Refer to the Creating SubVIs section of Chapter 7, Creating VIs and 
SubVIs, for more information about using subVIs on the block 
diagram.

• Express VIs—SubVIs designed to aid in common measurement tasks. 
You configure an Express VI using a configuration dialog box.

Refer to the Express VIs section of this chapter for more information 
about using Express VIs.

• Structures—Execution control elements, such as For Loops, While 
Loops, Case structures, Flat and Stacked Sequence structures, Timed 
structures, and Event structures.

Refer to Chapter 8, Loops and Structures, for more information about 
using structures.

Refer to the LabVIEW Help for the complete list of block diagram nodes.

Polymorphic VIs and Functions
Polymorphic VIs and functions can adjust to input data of different data 
types. Most LabVIEW structures are polymorphic, as are some VIs and 
functions.

Functions are polymorphic to varying degrees—none, some, or all of their 
inputs can be polymorphic. Some function inputs accept numeric values or 
Boolean values. Some accept numeric values or strings. Some accept not 
only scalar numeric values, but also arrays of numeric values, clusters of 
numeric values, arrays of clusters of numeric values, and so on. Some 
accept only one-dimensional arrays, although the array elements can be of 
any type. Some functions accept all types of data, including complex 
numeric values.

Refer to the Grouping Data with Arrays and Clusters section of Chapter 9, 
Grouping Data Using Strings, Arrays, and Clusters, for more information 
about arrays and clusters.

Functions Overview
Functions are the essential operating elements of LabVIEW. Function 
icons on the Functions palette have pale yellow backgrounds and black 
foregrounds. Functions do not have front panels or block diagrams but do 
have connector panes. You cannot open or edit a function.



Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-5 LabVIEW Fundamentals

Adding Terminals to Functions
You can change the number of terminals for some functions. For example, 
to build an array with 10 elements, you must add 10 terminals to the Build 
Array function.

You can add terminals to functions by using the Positioning tool to drag the 
top or bottom borders of the function up or down, respectively. You also can 
use the Positioning tool to remove terminals from functions, but you cannot 
remove a terminal that is already wired. You must first delete the existing 
wire to remove the terminal.

Refer to the Using Wires to Link Block Diagram Objects section of this 
chapter for more information about wiring objects.

Built-in VIs and Functions
The Functions palette also includes the VIs that ship with LabVIEW. Use 
these VIs and functions as subVIs in an application to reduce development 
time. Click the View button on the Functions palette and select Always 
Visible Categories»Show All Categories from the shortcut menu to 
display all categories on the Functions palette.

Refer to the Using Built-In VIs and Functions section of Chapter 7, 
Creating VIs and SubVIs, for more information about using the built-in VIs 
and functions.

Refer to the LabVIEW Help for detailed information about all built-in VIs 
and functions.

Express VIs
Use the Express VIs for common measurement tasks. Express VIs are 
nodes that require minimal wiring because you configure them with dialog 
boxes. The inputs and outputs for the Express VI depend on how you 
configure the VI. Express VIs appear on the block diagram as expandable 
nodes with icons surrounded by a blue field.

Refer to the Getting Started with LabVIEW manual for more information 
about using Express VIs.



Chapter 5 Building the Block Diagram

LabVIEW Fundamentals 5-6 ni.com

Using Wires to Link Block Diagram Objects
You transfer data among block diagram objects through wires. Each wire 
has a single data source, but you can wire it to many VIs and functions that 
read the data, similar to passing required parameters in text-based 
programming languages. You must wire all required block diagram 
terminals. Otherwise, the VI is broken and will not run. Display the 
Context Help window to see which terminals a block diagram node 
requires. The labels of required terminals appear bold in the Context Help 
window.

Refer to the Correcting Broken VIs section of Chapter 6, Running and 
Debugging VIs, for more information about broken VIs.

Wire Appearance and Structure
Wires are different colors, styles, and thicknesses depending on their data 
types, similar to how the color and symbol of a terminal indicate the data 
type of the corresponding control or indicator. A broken wire appears as a 
dashed black line with a red X in the middle. Broken wires occur for a 
variety of reasons, such as when you try to wire two objects with 
incompatible data types. The arrows on either side of the red X on the 
broken wire indicate the direction of the data flow, and the color of the 
arrows indicate the data type of the data flowing through the wire.

Refer to the Control and Indicator Data Types section of this chapter for 
more information about data types. Refer to the Block Diagram Data Flow 
section of this chapter for more information about data flow.

Wire stubs are the truncated wires that appear next to unwired terminals 
when you move the Wiring tool over a VI or function. They indicate the 
data type of each terminal. A tip strip also appears, listing the name of the 
terminal. After you wire a terminal, the wire stub for that terminal does not 
appear when you move the Wiring tool over its node.

A wire segment is a single horizontal or vertical piece of wire. A bend in a 
wire is where two segments join. The point at which two or more wire 
segments join is a junction. A wire branch contains all the wire segments 
from junction to junction, terminal to junction, or terminal to terminal if 
there are no junctions in between. The following figure shows a wire 
segment, bend, and junction.



Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-7 LabVIEW Fundamentals

Wiring Objects
Use the Wiring tool to manually connect the terminals on one block 
diagram node to the terminals on another block diagram node. The cursor 
point of the tool is the tip of the unwound wire spool. When you move the 
Wiring tool over a terminal, the terminal blinks. When you move the 
Wiring tool over a VI or function terminal, a tip strip also appears, listing 
the name of the terminal. Wiring to the terminal might create a broken wire. 
You must correct the broken  wire before you can run the VI. 

Refer to the Correcting Broken Wires section of this chapter for more 
information about correcting broken wires.

Use the Context Help window to determine exactly where to connect 
wires. When you move the cursor over a VI or function, the Context Help 
window lists each terminal of the VI or function. The Context Help 
window does not display terminals for expandable VIs and functions, such 
as the Build Array function. Click the Show Optional Terminals and Full 
Path button in the Context Help window to display the optional terminals 
of the connector pane.

When you cross wires, a small gap appears in the first wire you drew to 
indicate that the first wire is under the second wire.

Bending Wires
While you are wiring a terminal, bend the wire at a 90 degree angle once 
by moving the cursor in either a vertical or horizontal direction. To bend a 
wire in multiple directions, click the mouse button to set the wire and then 
move the cursor in the new direction. You can repeatedly set the wire and 
move it in new directions.

1 Segment 2 Bend 3 Junction

1

1
3

2



Chapter 5 Building the Block Diagram

LabVIEW Fundamentals 5-8 ni.com

Undoing Wires
To undo the last point where you set the wire, press the <Shift> key and 
click anywhere on the block diagram. To abort the entire wiring operation, 
right-click anywhere on the block diagram.

(Mac OS) Press the <Option> key and click. (Linux) Click the middle mouse 
button.

Automatically Wiring Objects
As you move a selected object close to other objects on the block diagram, 
LabVIEW draws temporary wires to show you valid connections. When 
you release the mouse button to place the object on the block diagram, 
LabVIEW automatically connects the wires. You also can automatically 
wire objects already on the block diagram. LabVIEW connects the 
terminals that best match and does not connect the terminals that do not 
match.

Toggle automatic wiring by pressing the space bar while you move an 
object using the Positioning tool.

Selecting Wires
Select wires by using the Positioning tool to single-click, double-click, or 
triple-click them. Single-clicking a wire selects one segment of the wire. 
Double-clicking a wire selects a wire branch. Triple-clicking a wire selects 
the entire wire.

Correcting Broken Wires
A broken wire appears as a dashed black line with a red X in the middle. 
Broken wires occur for a variety of reasons, such as when you try to wire 
two objects with incompatible data types. Move the Wiring tool over a 
broken wire to display a tip strip that describes why the wire is broken. This 
information also appears in the Context Help window when you move the 
Wiring tool over a broken wire. Right-click the wire and select List Errors 
from the shortcut menu to display the Error list window. Click the Help 
button to display more information about why the wire is broken.

Triple-click the wire with the Positioning tool and press the <Delete> key 
to remove a broken wire. You also can right-click the wire and select from 
shortcut menu options such as Delete Wire Branch, Create Wire Branch, 
Remove Loose Ends, Clean Up Wire, Change to Control, Change to 



Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-9 LabVIEW Fundamentals

Indicator, Enable Indexing at Source, and Disable Indexing at Source. 
These options change depending on the reason for the broken wire.

You can remove all broken wires by selecting Edit»Remove Broken 
Wires or by pressing the <Ctrl-B> keys. (Mac OS) Press the <Command-B> 
keys. (Linux) Press the <Meta-B> keys.

Caution Use caution when removing all broken wires. Sometimes a wire appears broken 
because you are not finished wiring the block diagram.

Coercion Dots
Coercion dots appear on block diagram nodes to alert you that you wired 
two different numeric data types together. The dot means that LabVIEW 
converted the value passed into the node to a different representation. For 
example, the Add function expects two double-precision, floating-point 
inputs. If you change one of those inputs to an integer, a coercion dot 
appears on the Add function, as shown in the following figure.

Coercion dots can cause a VI to use more memory and increase its run time. 
Try to keep data types consistent in the VIs you create.

Block Diagram Data Flow
LabVIEW follows a dataflow model for running VIs. A block diagram 
node executes when it receives all required inputs. When a node executes, 
it produces output data and passes the data to the next node in the dataflow 
path. The movement of data through the nodes determines the execution 
order of the VIs and functions on the block diagram.



Chapter 5 Building the Block Diagram

LabVIEW Fundamentals 5-10 ni.com

Visual Basic, C++, JAVA, and most other text-based programming 
languages follow a control flow model of program execution. In control 
flow, the sequential order of program elements determines the execution 
order of a program.

In LabVIEW, the flow of data rather than the sequential order of commands 
determines the execution order of block diagram elements. Therefore, you 
can create block diagrams that have simultaneous operations. For example, 
you can run two For Loops simultaneously and display the results on the 
front panel, as shown in the following block diagram.

Data Dependency and Artificial Data Dependency
The control flow model of execution is instruction driven. Dataflow 
execution is data driven, or data dependent. A node that receives data from 
another node always executes after the other node completes execution.



Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-11 LabVIEW Fundamentals

Block diagram nodes not connected by wires can execute in any order. You 
can use flow-through parameters to control execution order when natural 
data dependency does not exist. You can use a sequence structure to control 
execution order when flow-through parameters are not available. 

Refer to the Flow-Through Parameters section of this chapter for more 
information about flow-through parameters. Refer to the Sequence 
Structures section of Chapter 8, Loops and Structures, for more 
information about sequence structures.

You also can create an artificial data dependency, in which the receiving 
node does not actually use the data received. Instead, the receiving node 
uses the arrival of data to trigger its execution. Refer to the Timing 
Template (data dep) VI in the labview\examples\general\
structs.llb for an example of using artificial data dependency.

Missing Data Dependencies
Do not assume left-to-right or top-to-bottom execution when no data 
dependency exists. Make sure you explicitly define the sequence of events 
when necessary by wiring the dataflow. 

In the following block diagram, no dependency exists between the Read 
from Binary File function and the Close File function because the Read 
from Binary File function is not wired to the Close File function. This 
example might not work as expected because there is no way to determine 
which function runs first. If the Close File function runs first, the Read from 
Binary File function does not work.



Chapter 5 Building the Block Diagram

LabVIEW Fundamentals 5-12 ni.com

The following block diagram establishes a dependency by wiring an output 
of the Read from Binary File function to the Close File function. The Close 
File function does not run until it receives the output of the Read from 
Binary File function.

Flow-Through Parameters
Flow-through parameters, typically a refnum or error cluster, return the 
same value as the corresponding input parameter. Use these parameters to 
control execution order when natural data dependency does not exist. By 
wiring the flow-through output of the first node you want to execute to the 
corresponding input of the next node you want to execute, you create an 
artificial data dependency. Without these flow-through parameters, you 
must use sequence structures to ensure that data operations take place in the 
order you want.

Refer to the Handling Errors section of Chapter 6, Running and Debugging 
VIs, for more information about error I/O. Refer to the Sequence Structures 
section of Chapter 8, Loops and Structures, for more information about 
sequence structures.

Data Flow and Managing Memory
Dataflow execution makes managing memory easier than the control flow 
model of execution. In LabVIEW, you do not allocate memory for 
variables or assign values to them. Instead, you create a block diagram with 
wires that represent the transition of data. 

VIs and functions that generate data automatically allocate the memory for 
that data. When the VI or function no longer uses the data, LabVIEW 
deallocates the associated memory. When you add new data to an array or 
a string, LabVIEW allocates enough memory to manage the new data.



Chapter 5 Building the Block Diagram

© National Instruments Corporation 5-13 LabVIEW Fundamentals

Designing the Block Diagram
Use the following guidelines to design block diagrams:

• Use a left-to-right and top-to-bottom layout. Although the positions of 
block diagram elements do not determine execution order, avoid 
wiring from right to left to keep the block diagram organized and easy 
to understand. Only wires and structures determine execution order.

• Avoid creating a block diagram that occupies more than one or two 
screens. If a block diagram becomes large and complex, it can be 
difficult to understand or debug.

• Decide if you can reuse some components of the block diagram in 
other VIs or if a section of the block diagram works together as a 
logical component. If so, divide the block diagram into subVIs that 
perform specific tasks. Using subVIs helps you manage changes and 
debug the block diagrams quickly. 

Refer to the Creating SubVIs section of Chapter 7, Creating VIs and 
SubVIs, for more information about subVIs.

• Use the error handling VIs, functions, and parameters to manage  
errors on the block diagram.

Refer to the Handling Errors section of Chapter 6, Running and 
Debugging VIs, for more information about handling errors.

• Avoid wiring under a structure border or between overlapped objects, 
because LabVIEW might hide some segments of the resulting wire.

• Avoid placing objects on top of wires. Placing a terminal or icon on top 
of a wire makes it appear as if a connection exists when it does not.

• Use free labels to document code on the block diagram. 

Refer to the Labeling section of Chapter 4, Building the Front Panel, 
for more information about using free labels.



© National Instruments Corporation 6-1 LabVIEW Fundamentals

6
Running and Debugging VIs

To run a VI, you must wire all the subVIs, functions, and structures with 
the correct data types for the terminals. Sometimes a VI produces data or 
runs in a way you do not expect. You can use LabVIEW to identify 
problems with block diagram organization or with the data passing through 
the block diagram.

Running VIs
Running a VI executes the operation for which you designed the VI. You 
can run a VI if the Run button on the toolbar appears as a solid white arrow, 
shown as follows.

The solid white arrow also indicates you can use the VI as a subVI if you 
create a connector pane for the VI.

Refer to the Building the Connector Pane section of Chapter 7, Creating 
VIs and SubVIs, for more information about creating connector panes.

A VI runs when you click the Run or Run Continuously buttons or the 
single-stepping buttons on the block diagram toolbar. While the VI runs, 
the Run button changes to a darkened arrow, shown as follows, to indicate 
that the VI is running. 

You cannot edit a VI while the VI runs.

Clicking the Run button runs the VI once. The VI stops when the VI 
completes its data flow. Clicking the Run Continuously button, shown 
as follows, runs the VI continuously until you stop it manually.



Chapter 6 Running and Debugging VIs

LabVIEW Fundamentals 6-2 ni.com

Clicking the single-stepping buttons runs the VI in incremental steps.

Refer to the Single-Stepping section of this chapter for more information 
about using the single-stepping buttons to debug a VI.

Correcting Broken VIs
If a VI does not run, it is a broken, or nonexecutable, VI. The Run button 
appears broken, shown as follows, when the VI you are creating or editing 
contains errors.

If the button still appears broken when you finish wiring the block diagram, 
the VI is broken and cannot run.

Finding Causes for Broken VIs 
Warnings do not prevent you from running a VI. They are designed to help 
you avoid potential problems in VIs. Errors, however, can break a VI. You 
must resolve any errors before you can run the VI.

Click the broken Run button or select View»Error List to find out why a 
VI is broken. The Error list window lists all the errors. The Items with 
errors section lists the names of all items in memory, such as VIs and 
project libraries that have errors. If two or more items have the same name, 
this section shows the specific application instance for each item. The 
errors and warnings section lists the errors and warnings for the VI you 
select in the Items with errors section. The Details section describes the 
errors and in some cases recommends how to correct the errors. Click the 
Help button to display a topic in the LabVIEW Help that describes the error 
in detail and includes step-by-step instructions for correcting the error.

Click the Show Error button or double-click the error description to 
highlight the area on the block diagram or front panel that contains the 
error.

The toolbar includes the Warning button, shown as follows, if a VI 
includes a warning and you placed a checkmark in the Show Warnings 
checkbox in the Error list window.



Chapter 6 Running and Debugging VIs

© National Instruments Corporation 6-3 LabVIEW Fundamentals

Common Causes of Broken VIs
The following list contains common reasons why a VI is broken while you 
edit it:

• The block diagram contains a broken wire because of a mismatch of 
data types or a loose, unconnected end.

Refer to the Correcting Broken Wires section of Chapter 5, Building 
the Block Diagram, for information about correcting broken wires.

• A required block diagram terminal is unwired.

Refer to the Using Wires to Link Block Diagram Objects section of 
Chapter 5, Building the Block Diagram, for information about setting 
required inputs and outputs.

• A subVI is broken or you edited its connector pane after you placed its 
icon on the block diagram of the VI.

Refer to the Creating SubVIs section of Chapter 7, Creating VIs and 
SubVIs, for information about subVIs.

Debugging Techniques
If a VI is not broken, but you get unexpected data, you can use several 
techniques to identify and correct problems with the VI or the block 
diagram data flow.

Execution Highlighting
View an animation of the execution of the block diagram by clicking the 
Highlight Execution button, shown as follows.

Execution highlighting shows the movement of data on the block diagram 
from one node to another using bubbles that move along the wires. Use 
execution highlighting in conjunction with single-stepping to see how data 
values move from node to node through a VI. 

Note Execution highlighting greatly reduces the speed at which the VI runs.

If the error out cluster reports an error, the error value appears next to 
error out with a red border. If no error occurs, OK appears next to error out 
with a green border.



Chapter 6 Running and Debugging VIs

LabVIEW Fundamentals 6-4 ni.com

Refer to the Error Clusters section of this chapter for more information 
about error clusters.

Single-Stepping
Single-step through a VI to view each action of the VI on the block diagram 
as the VI runs. The single-stepping buttons, shown as follows, affect 
execution only in a VI or subVI in single-step mode.

Enter single-step mode by clicking the Step Over or Step Into button on 
the block diagram toolbar. Move the cursor over the Step Over, Step Into, 
or Step Out button to view a tip strip that describes the next step if you click 
that button. You can single-step through subVIs or run them normally.

If you single-step through a VI with execution highlighting on, an 
execution glyph, shown as follows, appears on the icons of the subVIs that 
are currently running.

Probe Tool
Use a generic probe to view the data that passes through a wire. Right-click 
a wire and select Custom Probe»Generic Probe from the shortcut menu 
to use the generic probe.

Breakpoints
Use the Breakpoint tool, shown as follows, to place a breakpoint on a VI, 
node, or wire on the block diagram and pause execution at that location.

When you set a breakpoint on a wire, execution pauses after data passes 
through the wire. Place a breakpoint on the block diagram to pause 
execution after all nodes on the block diagram execute.

Step Into Step Over Step Out



Chapter 6 Running and Debugging VIs

© National Instruments Corporation 6-5 LabVIEW Fundamentals

When a VI pauses at a breakpoint, LabVIEW brings the block diagram to 
the front and uses a marquee to highlight the node or wire that contains the 
breakpoint. When you move the cursor over an existing breakpoint, the 
black area of the Breakpoint tool cursor appears white.

When you reach a breakpoint during execution, the VI pauses and the 
Pause button appears red. You can take the following actions:

• Single-step through execution using the single-stepping buttons.

• Probe wires to check intermediate values.

• Change values of front panel controls.

• Click the Pause button to continue running to the next breakpoint or 
until the VI finishes running.

LabVIEW saves breakpoints with a VI, but they are active only when 
you run the VI. You can view all breakpoints by selecting Operate»
Breakpoints and clicking the Find button.

Handling Errors
No matter how confident you are in the VI you create, you cannot predict 
every problem a user can encounter. Without a mechanism to check for 
errors, you know only that the VI does not work properly. Error checking 
tells you why and where errors occur.

When you perform any kind of input and output (I/O), consider the 
possibility that errors might occur. Almost all I/O functions return error 
information. Include error checking in VIs, especially for I/O operations 
(file, serial, instrumentation, data acquisition, and communication), and 
provide a mechanism to handle errors appropriately.

By default, LabVIEW automatically handles any error when a VI runs by 
suspending execution, highlighting the subVI or function where the error 
occurred, and displaying an error dialog box.

To disable automatic error handling for the current VI, select File»
VI Properties and select Execution from the Category pull-down menu. 
To disable automatic error handling for any new, blank VIs you create, 
select Tools»Options and select Block Diagram from the Category list. 
To disable automatic error handling for a subVI or function within a VI, 
wire its error out parameter to the error in parameter of another subVI or 
function or to an error out indicator.



Chapter 6 Running and Debugging VIs

LabVIEW Fundamentals 6-6 ni.com

You can choose other error handling methods. For example, if an I/O VI on 
the block diagram times out, you might not want the entire application to 
stop and display an error dialog box. You also might want the VI to retry 
for a certain period of time. In LabVIEW, you can make these error 
handling decisions on the block diagram of the VI.

Use the LabVIEW error handling VIs and functions on the Dialog & User 
Interface palette and the error in and error out parameters of most VIs 
and functions to manage errors. For example, if LabVIEW encounters an 
error, you can display the error message in different kinds of dialog boxes. 
Use error handling in conjunction with the debugging tools to find and 
manage errors.

VIs and functions return errors in one of two ways—with numeric error 
codes or with an error cluster. Typically, functions use numeric error codes, 
and VIs use an error cluster, usually with error inputs and outputs.

Error handling in LabVIEW follows the dataflow model. Just as data values 
flow through a VI, so can error information. Wire the error information 
from the beginning of the VI to the end. Include an error handler VI at the 
end of the VI to determine if the VI ran without errors. Use the error in and 
error out clusters in each VI you use or build to pass the error information 
through the VI. The error clusters are flow-through  parameters.

Refer to the Flow-Through Parameters section of Chapter 5, Building the 
Block Diagram, for more information about flow-through parameters.

As the VI runs, LabVIEW tests for errors at each execution node. If 
LabVIEW does not find any errors, the node executes normally. If 
LabVIEW detects an error, the node passes the error to the next node 
without executing that part of the code. The next node does the same thing, 
and so on. At the end of the execution flow, LabVIEW reports the error.

Error Clusters
The error in and error out clusters include the following components of 
information:

• status is a Boolean value that reports TRUE if an error occurred.

• code is a 32-bit signed integer that identifies the error numerically. A 
nonzero error code coupled with a status of FALSE signals a warning 
rather than a error.

• source is a string that identifies where the error occurred.



Chapter 6 Running and Debugging VIs

© National Instruments Corporation 6-7 LabVIEW Fundamentals

Some VIs, functions, and structures that accept Boolean data also recognize 
an error cluster. For example, you can wire an error cluster to the Boolean 
inputs of the Select, Quit LabVIEW, or Stop functions. If an error occurs, 
the error cluster passes a TRUE value to the function.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings, 
Arrays, and Clusters, for more information about clusters.

Using While Loops for Error Handling
You can wire an error cluster to the conditional terminal of a While  Loop 
to stop the iteration of the While Loop. When you wire the error cluster to 
the conditional terminal, only the TRUE or FALSE value of the status 
parameter of the error cluster is passed to the terminal. When an error 
occurs, the While Loop stops.

When an error cluster is wired to the conditional terminal, the shortcut 
menu items Stop if True and Continue if True change to Stop on Error 
and Continue while Error.

Refer to the While Loops section of Chapter 8, Loops and Structures, for 
more information about using While Loops.

Using Case Structures for Error Handling
When you wire an error cluster to the selector terminal of a Case structure, 
the case selector label displays two cases—Error and No Error—and the 
border of the Case structure changes color—red for Error and green for 
No Error. If an error occurs, the Case structure executes the Error 
subdiagram.

Refer to the Case Structures section of Chapter 8, Loops and Structures, for 
more information about using Case structures.

Use the SubVI with Error Handling template VI to create a VI with a Case 
structure for error handling.

Refer to the LabVIEW VI Templates section of Chapter 1, Introduction to 
LabVIEW, for more information about template VIs.



© National Instruments Corporation 7-1 LabVIEW Fundamentals

7
Creating VIs and SubVIs

A VI can serve as a user interface or as an operation you use frequently. 
After you learn how to build a front panel and block diagram, you can 
create your own VIs and subVIs and customize these VIs.

Searching for Examples
Before you build a new VI, consider searching for an example VI that 
meets your needs by selecting Help»Find Examples to open the 
NI Example Finder. If you cannot find an appropriate example VI, open 
a template VI from the New dialog box and populate the template with 
built-in VIs and functions from the Functions palette.

Refer to the LabVIEW VI Templates, Example VIs, and Tools section of 
Chapter 1, Introduction to LabVIEW, for more information about example 
VIs and template VIs.

Using Built-In VIs and Functions
LabVIEW includes built-in VIs and functions to help you build specific 
applications, such as data acquisition VIs and functions, VIs that access 
other VIs, VIs that communicate with other applications, and so on. You 
can use these VIs as subVIs in an application to reduce development time. 
Before you build a new VI, consider searching the Functions palette for 
similar VIs and functions and using an existing VI as the starting point for 
the new VI.

Creating SubVIs
After you build a VI, you can use it in another VI. A VI called from the 
block diagram of another VI is called a subVI. You can reuse a subVI in 
other VIs. To create a subVI, you need to build a connector pane and create 
an icon.



Chapter 7 Creating VIs and SubVIs

LabVIEW Fundamentals 7-2 ni.com

A subVI node corresponds to a subroutine call in text-based programming 
languages. The node is not the subVI itself, just as a subroutine call 
statement in a program is not the subroutine itself. A block diagram that 
contains several identical subVI nodes calls the same subVI several times.

The subVI controls and indicators receive data from and return data to the 
block diagram of the calling VI. Click the Select a VI icon or text on the 
Functions palette, navigate to and double-click a VI, and place the VI on a 
block diagram to create a subVI call to that VI.

You can edit a subVI by using the Operating or Positioning tool to 
double-click the subVI on the block diagram. When you save the subVI, the 
changes affect all calls to the subVI, not just the current instance.

Creating an Icon
Every VI displays an icon, shown as follows, in the upper right corner of 
the front panel and block diagram windows.

An icon is a graphical representation of a VI. It can contain text, images, or 
a combination of both. If you use a VI as a subVI, the icon identifies the 
subVI on the block diagram of the VI.

The default icon contains a number that indicates how many new VIs you 
have opened since launching LabVIEW. Create custom icons to replace the 
default icon by right-clicking the icon in the upper right corner of the front 
panel or block diagram and selecting Edit Icon from the shortcut menu or 
by double-clicking the icon in the upper right corner of the front panel.

You also can drag a graphic from anywhere in your file system and drop it 
in the upper right corner of the front panel or block diagram. LabVIEW 
converts the graphic to a 32 × 32 pixel icon.

Refer to the National Instruments Web site at ni.com/info and enter the 
info code expnr7 for standard graphics to use in a VI icon.



Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-3 LabVIEW Fundamentals

Building the Connector Pane
To use a VI as a subVI, you need to build a connector pane, shown as 
follows.

The connector pane is a set of terminals that corresponds to the controls and 
indicators of that VI, similar to the parameter list of a function call in 
text-based programming languages. The connector pane defines the inputs 
and outputs you can wire to the VI so you can use it as a subVI. A connector 
pane receives data at its input terminals and passes the data to the block 
diagram code through the front panel controls and receives the results at its 
output terminals from the front panel indicators.

Define connections by assigning a front panel control or indicator to each 
of the connector pane terminals. To define a connector pane, right-click the 
icon in the upper right corner of the front panel and select Show Connector 
from the shortcut menu to display the connector pane. The connector pane 
appears in place of the icon. When you view the connector pane for the first 
time, you see a connector pattern. You can select a different pattern by 
right-clicking the connector pane and selecting Patterns from the shortcut 
menu.

Each rectangle on the connector pane represents a terminal. Use the 
rectangles to assign inputs and outputs. The default connector pane pattern 
is 4 × 2 × 2 × 4. If you anticipate changes to the VI that would require a new 
input or output, keep the default connector pane pattern to leave extra 
terminals unassigned.

You can assign up to 28 terminals to a connector pane. If your front panel 
contains more than 28 controls and indicators that you want to use 
programmatically, group some of them into a cluster and assign the cluster 
to a terminal on the connector pane.

Refer to the Clusters section of Chapter 9, Grouping Data Using Strings, 
Arrays, and Clusters, for more information about grouping data using 
clusters.

Select a different terminal pattern for a VI by right-clicking the connector 
pane and selecting Patterns from the shortcut menu. For example, you can 
select a connector pane pattern with extra terminals. You can leave the extra 



Chapter 7 Creating VIs and SubVIs

LabVIEW Fundamentals 7-4 ni.com

terminals unconnected until you need them. This flexibility enables you to 
make changes with minimal effect on the hierarchy of the VIs.

Creating SubVIs from Sections of a VI
Convert a section of a VI into a subVI by using the Positioning tool to select 
the section of the block diagram you want to reuse and selecting Edit»
Create SubVI. An icon for the new subVI replaces the selected section of 
the block diagram. LabVIEW creates controls and indicators for the new 
subVI, automatically configures the connector pane based on the number 
of control and indicator terminals you selected, and wires the subVI to the 
existing wires.

Creating a subVI from a selection is convenient but still requires careful 
planning to create a logical hierarchy of VIs. Consider which objects to 
include in the selection and avoid changing the functionality of the 
resulting VI.

Designing SubVI Front Panels
Place the controls and indicators on the front panel as they appear in the 
connector pane. Place the controls on the left of the front panel and the 
indicators on the right. Place the error in clusters on the lower left of the 
front panel and the error out clusters on the lower right.

Refer to the Building the Connector Pane section of this chapter for more 
information about setting up a connector pane.

Viewing the Hierarchy of VIs
The VI Hierarchy window displays a graphical representation of all open 
LabVIEW projects and targets, as well as the calling hierarchy for all VIs 
in memory, including type definitions and global variables. Select View»
VI Hierarchy to display the VI Hierarchy window. Use this window to 
view the subVIs and other nodes that make up the VIs in memory and to 
search the VI hierarchy.

Refer to the Project Explorer Window section of Chapter 3, LabVIEW 
Environment, for more information about LabVIEW projects.

The VI Hierarchy window displays a top-level icon to represent the main 
LabVIEW application instance, under which appear all open VIs that are 
not part of a project or are not part of the application instance for a project. 
If you add a project, the VI Hierarchy window also displays another 



Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-5 LabVIEW Fundamentals

top-level icon to represent the project. Each target you add appears under 
the project.

As you move the cursor over objects in the VI Hierarchy window, 
LabVIEW displays the name of each VI in a tip strip. You can use the 
Positioning tool to drag a VI from the VI Hierarchy window to the block 
diagram to use the VI as a subVI in another VI. You also can select and 
copy a node or several nodes to the clipboard and paste them on other block 
diagrams. Double-click a VI in the VI Hierarchy window to display the 
front panel of that VI.

A VI that contains subVIs has an arrow button on its bottom border. Click 
this arrow button to show or hide subVIs. A red arrow button appears when 
all subVIs are hidden. A black arrow button appears when all subVIs are 
displayed.

Polymorphic VIs
Polymorphic VIs accept different data types for a single input or output 
terminal. A polymorphic VI is a collection of VIs with the same connector 
pane patterns. Each VI in the collection is an instance of the polymorphic 
VI.

For example, the Read Key VI is polymorphic. Its default value terminal 
accepts Boolean; double-precision, floating-point numeric; 32-bit signed 
integer numeric; path; string; or 32-bit unsigned integer numeric data.

For most polymorphic VIs, the data types you wire to the inputs of the 
polymorphic VI determine the instance to use. If the polymorphic VI does 
not contain an instance compatible with that data type, a broken wire 
appears. If the data types you wire to the polymorphic VI inputs do not 
determine the instance to use, you must select the instance manually. If you 
manually select an instance of a polymorphic VI, the VI no longer behaves 
as a polymorphic VI because it accepts and returns only the data types of 
the instance you select.

To select the instance manually, right-click the polymorphic VI, select 
Select Type from the shortcut menu, and select the instance to use. You 
also can use the Operating tool to click the polymorphic VI selector, shown 
as follows, and select an instance from the shortcut menu.



Chapter 7 Creating VIs and SubVIs

LabVIEW Fundamentals 7-6 ni.com

Right-click the polymorphic VI on the block diagram and select Visible 
Items»Polymorphic VI Selector from the shortcut menu to display the 
selector. To change the polymorphic VI to accept all the handled data types 
again, right-click the polymorphic VI and select Select Type»Automatic 
from the shortcut menu or use the Operating tool to click the polymorphic 
VI selector and select Automatic from the shortcut menu.

Build polymorphic VIs when you perform the same operation on different 
data types.

Note You can build and edit polymorphic VIs only in the LabVIEW Professional 
Development System.

For example, if you want to perform the same mathematical operation on a 
single-precision floating-point numeric, an array of numeric values, or a 
waveform, you could create three separate VIs—Compute Number, 
Compute Array, and Compute Waveform. When you need to perform the 
operation, you place one of these VIs on the block diagram, depending on 
the data type you use as an input. 

Instead of manually placing a version of the VI on the block diagram, you 
can create and use a single polymorphic VI. 

Saving VIs
Select File»Save to save a VI. When you save a VI, you should use a 
descriptive name so you can easily identify the VI later. You also can save 
VIs for a previous version of LabVIEW to make upgrading LabVIEW 
convenient and to help you maintain the VIs in two versions of LabVIEW 
when necessary.

Naming VIs
When you save VIs, use descriptive names. Descriptive names, such as 
Temperature Monitor.vi and Serial Write & Read.vi, make it 
easy to identify a VI and know how you use it. If you use ambiguous names, 
such as VI#1.vi, you might find it difficult to identify VIs, especially if 
you have saved several VIs.

Consider whether your users will run the VIs on another platform. Avoid 
using characters that some operating systems reserve for special purposes, 
such as \:/?*<> and #.



Chapter 7 Creating VIs and SubVIs

© National Instruments Corporation 7-7 LabVIEW Fundamentals

Note If you have several VIs of the same name saved on your computer, carefully organize 
the VIs in different directories or LLBs to avoid LabVIEW referencing the wrong subVI 
when running the top-level VI.

Saving for a Previous Version
You can save VIs for a previous version of LabVIEW to make upgrading 
LabVIEW convenient and to help you maintain the VIs in two versions of 
LabVIEW when necessary. Select File»Save For Previous Version to 
save for the previous version of LabVIEW.

When you save a VI for the previous version, LabVIEW converts not just 
that VI but all the VIs in its hierarchy, excluding files in the 
labview\vi.lib directory.

Often a VI uses functionality not available in the previous version of 
LabVIEW. In such cases, LabVIEW saves as much of the VI as it can and 
produces a report of what it cannot convert. The report appears immediately 
in the Warnings dialog box. Click the OK button to acknowledge these 
warnings and close the dialog box. Click the Save to File button to save the 
warnings to a text file to review later.

Customizing VIs
You can configure VIs and subVIs to work according to your application 
needs. For example, if you plan to use a VI as a subVI that requires user 
input, configure the VI so that its front panel appears each time you call it.

Select File»VI Properties to configure the appearance and behavior of a 
VI. Use the Category pull-down menu at the top of the VI Properties 
dialog box to select from several different option categories.

The VI Properties dialog box includes the following option categories:

• General—Use this page to determine the current path where a VI is 
saved, its revision number, revision history, and any changes made 
since the VI was last saved. You also can use this page to edit the icon 
for the VI.

• Documentation—Use this page to add a description of the VI and link 
to a help file topic. 

Refer to the Documenting VIs section of Chapter 12, Documenting and 
Printing VIs, for more information about the documentation options.

• Security—Use this page to lock or password-protect a VI.



Chapter 7 Creating VIs and SubVIs

LabVIEW Fundamentals 7-8 ni.com

• Window Appearance—Use this page to customize the window 
appearance of VIs, such as the window title and style.

• Window Size—Use this page to set the size of the window.

• Execution—Use this page to configure how a VI runs. For example, 
you can configure a VI to run immediately when it opens or to pause 
when called as a subVI.

• Editor Options—Use this page to set the size of the alignment  grid 
for the current VI and to change the style of the control or indicator 
LabVIEW creates when you right-click a terminal and select 
Create»Control or Create»Indicator from the shortcut menu.

Refer to the Aligning and Distributing Objects section of Chapter 4, 
Building the Front Panel, for more information about the alignment 
grid.



© National Instruments Corporation 8-1 LabVIEW Fundamentals

8
Loops and Structures

Structures are graphical representations of the loops and case statements of 
text-based programming languages. Use structures on the block diagram to 
repeat blocks of code and to execute code conditionally or in a specific 
order.

Like other nodes, structures have terminals that connect them to other block 
diagram nodes, execute automatically when input data are available, and 
supply data to output wires when execution completes. 

Each structure has a distinctive, resizable border to enclose the section of 
the block diagram that executes according to the rules of the structure. 
The section of the block diagram inside the structure border is called a 
subdiagram. The terminals that feed data into and out of structures are 
called tunnels. A tunnel is a connection point on a structure border.

Use the following structures located on the Structures palette to control 
how a block diagram executes processes:

• For Loop—Executes a subdiagram a set number of times.

• While Loop—Executes a subdiagram until a condition occurs.

• Case structure—Contains multiple subdiagrams, only one of which 
executes depending on the input value passed to the structure.

• Sequence structure—Contains one or more subdiagrams that execute 
in sequential order.

• Event structure—Contains one or more subdiagrams that execute 
depending on how the user interacts with the VI.

• Timed Structures—Execute one or more subdiagrams with time 
bounds and delays.

Right-click the border of a structure to display its shortcut menu.

For Loop and While Loop Structures
Use the For Loop and the While Loop to control repetitive operations.



Chapter 8 Loops and Structures

LabVIEW Fundamentals 8-2 ni.com

For Loops
A For Loop, shown as follows, executes a subdiagram a set number of 
times.

The value in the count terminal (an input terminal), shown as follows, 
indicates how many times to repeat the subdiagram.

Set the count explicitly by wiring a value from outside the loop to the left 
or top side of the count terminal, or set  the count implicitly with 
auto-indexing.

Refer to the Auto-Indexing to Set the For Loop Count section of this chapter 
for more information about setting the count implicitly.

The iteration terminal (an output terminal), shown as follows, contains the 
number of completed iterations.

The iteration count always starts at zero. During the first iteration, the 
iteration terminal returns 0.

Both the count and iteration terminals are 32-bit signed integers. If you wire 
a floating-point number to the count terminal, LabVIEW rounds it and 
coerces it to within range. If you wire 0 or a negative number to the count 
terminal, the loop does not execute and the outputs contain the default data 
for that data type.

Add shift registers to the For Loop to pass data from the current iteration to 
the next iteration.

Refer to the Shift Registers section of this chapter for more information 
about adding shift registers to a loop.



Chapter 8 Loops and Structures

© National Instruments Corporation 8-3 LabVIEW Fundamentals

While Loops
Similar to a Do Loop or a Repeat-Until Loop in text-based programming 
languages, a While Loop, shown as follows, executes a subdiagram until a 
condition occurs.

The While Loop executes the subdiagram until the conditional terminal, an 
input terminal, receives a specific Boolean value. The default behavior and 
appearance of the conditional terminal is Stop if True, shown as follows.

When a conditional terminal is Stop if True, the While Loop executes its 
subdiagram until the conditional terminal receives a TRUE value. You can 
change the behavior and appearance of the conditional terminal by 
right-clicking the terminal or the border of the While Loop and selecting 
Continue if True, shown as follows, from the shortcut menu.

When a conditional terminal is Continue if True, the While Loop executes 
its subdiagram until the conditional terminal receives a FALSE value. You 
also can use the Operating tool to click the conditional terminal to change 
the condition.

If you place the terminal of the Boolean control outside the While Loop, 
as shown in the following figure, and the control is set to FALSE if the 
conditional terminal is Stop if True when the loop starts, you cause an 
infinite loop. You also cause an infinite loop if the control outside the loop 
is set to TRUE and the conditional terminal is Continue if True.



Chapter 8 Loops and Structures

LabVIEW Fundamentals 8-4 ni.com

Changing the value of the control does not stop the infinite loop because the 
value is only read once, before the loop starts. To stop an infinite loop, you 
must abort the VI by clicking the Abort Execution button on the toolbar.

You also can perform basic error handling using the conditional terminal of 
a While Loop. When you wire an error cluster to the conditional terminal, 
only the TRUE or FALSE value of the status parameter of the error cluster 
passes to the terminal. Also, the Stop if True and Continue if True 
shortcut menu items change to Stop if Error and Continue while Error.

Refer to the Handling Errors section of Chapter 6, Running and Debugging 
VIs, for more information about error clusters and error handling.

The iteration terminal (an output terminal), shown as follows, contains the 
number of completed iterations.

The iteration count always starts at zero. During the first iteration, the 
iteration terminal returns 0.

Add shift registers to the While Loop to pass data from the current iteration 
to the next iteration.

Refer to the Shift Registers section of this chapter for more information 
about adding shift registers to a loop.



Chapter 8 Loops and Structures

© National Instruments Corporation 8-5 LabVIEW Fundamentals

Controlling Timing
You might want to control the speed at which a process executes, such as 
the speed at which data values are plotted to a chart. You can use a Wait 
function in the loop to wait an amount of time in milliseconds before the 
loop re-executes.

Auto-Indexing Loops
If you wire an array to a For Loop or While Loop input tunnel, you can read 
and process every element in that array by enabling auto-indexing.

Refer to the Arrays section of Chapter 9, Grouping Data Using Strings, 
Arrays, and Clusters, for more information about arrays.

When you wire an array to an input tunnel on the loop border and enable 
auto-indexing on the input tunnel, elements of that array enter the loop one 
at a time, starting with the first element. When auto-indexing is disabled, 
the entire array is passed into the loop. When you auto-index an array 
output tunnel, the output array receives a new element from every iteration 
of the loop. Therefore, auto-indexed output arrays are always equal in size 
to the number of iterations. For example, if the loop executes 10 times, the 
output array has 10 elements. If you disable auto-indexing on an output 
tunnel, only the element from the last iteration of the loop passes to the next 
node on the block diagram.

Right-click the tunnel at the loop border and select Enable Indexing or 
Disable Indexing from the shortcut menu to enable or disable 
auto-indexing. Auto-indexing for While Loops is disabled by default.

A bracketed glyph appears on the loop border to indicate that auto-indexing 
is enabled. The thickness of the wire between the output tunnel and the next 
node also indicates the loop is using auto-indexing. The wire is thicker 
when you use auto-indexing because the wire contains an array, instead of 
a scalar.

The loop indexes scalar elements from 1D arrays, 1D arrays from 
2D arrays, and so on. The opposite occurs at output tunnels. Scalar 
elements accumulate sequentially into 1D arrays, 1D arrays accumulate 
into 2D arrays, and so on.



Chapter 8 Loops and Structures

LabVIEW Fundamentals 8-6 ni.com

Auto-Indexing to Set the For Loop Count
If you enable auto-indexing on an array wired to a For Loop input terminal, 
LabVIEW sets the count terminal to the array size so you do not need to 
wire the count terminal. Because you can use For Loops to process arrays 
an element at a time, LabVIEW enables auto-indexing by default for every 
array you wire to a For Loop. Disable auto-indexing if you do not need to 
process arrays one element at a time.

If you enable auto-indexing for more than one tunnel or if you wire the 
count terminal, the count becomes the smaller of the choices. For example, 
if two auto-indexed arrays enter the loop, with 10 and 20 elements 
respectively, and you wire a value of 15 to the count terminal, the loop 
executes 10 times, and the loop indexes only the first 10 elements of the 
second array. As another example, if you plot data from two sources on one 
graph and you want to plot the first 100 elements, wire 100 to the count 
terminal. If one of the data sources includes only 50 elements, the loop 
executes 50 times and indexes only the first 50 elements. Use the Array Size 
function to determine the size of arrays.

Auto-Indexing with While Loops
If you enable auto-indexing for an array entering a While Loop, the While 
Loop indexes the array the same way a For Loop does. However, the 
number of iterations a While Loop executes is not limited by the size of the 
array because the While Loop iterates until a specific condition occurs. 
When a While Loop indexes past the end of the input array, the default 
value for the array element type passes into the loop. You can prevent the 
default value from passing into the While Loop by using the Array Size 
function. The Array Size function indicates how many elements are in the 
array. Set up the While Loop to stop executing when it has iterated the same 
number of times as the array size.

Caution Because you cannot determine the size of the output array in advance, enabling 
auto-indexing for the output of a For Loop is more efficient than with a While Loop. 
Iterating too many times can cause your system to run out of memory. 



Chapter 8 Loops and Structures

© National Instruments Corporation 8-7 LabVIEW Fundamentals

Using Loops to Build Arrays
In addition to using loops to read and process elements in an array, you also 
can use the For Loop and the While Loop to build arrays. Wire the output 
of a VI or function in the loop to the loop border. If you use a While Loop, 
right-click the resulting tunnel and select Enable Indexing from the 
shortcut menu. On the For Loop, indexing is enabled by default. The output 
of the tunnel is an array of every value the VI or function returns after each 
loop iteration.

Refer to the Arrays section of Chapter 9, Grouping Data Using Strings, 
Arrays, and Clusters, for more information about arrays.

Refer to the labview\examples\general\arrays.llb for examples 
of building arrays.

Shift Registers and the Feedback Node in Loops
Use shift registers or the Feedback Node with For Loops or While Loops 
to transfer values from one loop iteration to the next.

Shift Registers
Use shift registers when you want to pass values from previous iterations 
through the loop to the next iteration. A shift register appears as a pair of 
terminals, shown as follows, directly opposite each other on the vertical 
sides of the loop border. 

The terminal on the right side of the loop contains an up arrow and stores 
data on the completion of an iteration. LabVIEW transfers the data 
connected to the right side of the register to the next iteration. After the loop 
executes, the terminal on the right side of the loop returns the last value 
stored in the shift register.

Create a shift register by right-clicking the left or right border of a loop and 
selecting Add  Shift Register from the shortcut menu.

A shift register transfers any data type and automatically changes to the 
data type of the first object wired to the shift register. The data you wire to 
the terminals of each shift register must be the same type.

You can add more than one shift register to a loop. If you have multiple 
operations that use previous iteration values within your loop, use multiple 



Chapter 8 Loops and Structures

LabVIEW Fundamentals 8-8 ni.com

shift registers to store the data values from those different processes in the 
structure, as shown in the following figure.

Initializing Shift Registers
Initializing a shift register resets the value the shift register passes to the 
first iteration of the loop when the VI runs. Initialize a shift register by 
wiring a control or constant to the shift register terminal on the left side of 
the loop, as shown in the following figure.

In the previous figure, the For Loop executes five times, incrementing the 
value the shift register carries by one each time. After five iterations of the 
For Loop, the shift register passes the final value, 5, to the indicator and the 
VI quits. Each time you run the VI, the shift register begins with a value 
of 0. 

If you do not initialize the shift register, the loop uses the value written to 
the shift register when the loop last executed or the default value for the data 
type if the loop has never executed.



Chapter 8 Loops and Structures

© National Instruments Corporation 8-9 LabVIEW Fundamentals

Use an uninitialized shift register to preserve state information between 
subsequent executions of a VI. The following figure shows an uninitialized 
shift register.

In the previous figure, the For Loop executes five times, incrementing the 
value the shift register carries by one each time. The first time you run the 
VI, the shift register begins with a value of 0, which is the default value for 
a 32-bit integer. After five iterations of the For Loop, the shift register 
passes the final value, 5, to the indicator, and the VI quits. The next time 
you run the VI, the shift register begins with a value of 5, which was the last 
value from the previous execution. After five iterations of the For Loop, the 
shift register passes the final value, 10, to the indicator. If you run the VI 
again, the shift register begins with a value of 10, and so on. Uninitialized 
shift registers retain the value of the previous iteration until you close 
the VI.

Stacked Shift Registers
Stacked shift registers let you access data from previous loop iterations. 
Stacked shift registers remember values from multiple previous iterations 
and carry those values to the next iterations. To create a stacked shift 
register, right-click the left terminal and select Add Element from the 
shortcut menu.

Stacked shift registers can occur only on the left side of the loop because 
the right terminal transfers the data generated only from the current 
iteration to the next iteration, as shown in the following figure.



Chapter 8 Loops and Structures

LabVIEW Fundamentals 8-10 ni.com

If you add another element to the left terminal in the previous figure, values 
from the last two iterations carry over to the next iteration, with the most 
recent iteration value stored in the top shift register. The bottom terminal 
stores the data passed to it from the previous iteration.

Feedback Node
The Feedback Node, shown as follows, appears automatically in a For 
Loop or While Loop when you wire the output of a node or group of nodes 
to the input of that node or group of nodes.

You also can select the Feedback Node on the Functions palette and place 
it inside a For Loop or While Loop. Use the Feedback Node to avoid long 
wires across loops.

Right-click the Feedback Node and select Initializer Terminal from the 
shortcut menu to add the initializer terminal to the loop border to initialize 
the loop. When you select the Feedback Node on the Functions palette or 
if you convert an initialized shift register to a Feedback Node, the loop 
appears with an initializer terminal. Initializing a Feedback Node resets the 
initial value the Feedback Node passes to the first iteration of the loop when 
the VI runs. If you do not initialize the Feedback Node, the Feedback Node 
passes the last value written to the node or the default value for the data type 
if the loop has never executed. If you do not wire the input of the initializer 
terminal, each time the VI runs, the initial input of the Feedback Node is 
the last value from the previous execution.



Chapter 8 Loops and Structures

© National Instruments Corporation 8-11 LabVIEW Fundamentals

Replace a shift register with a Feedback Node by right-clicking the shift 
register and selecting Replace with Feedback Node from the shortcut 
menu. Replace a Feedback Node with shift registers by right-clicking the 
Feedback Node and selecting Replace with  Shift Register from the 
shortcut menu.

Default Data in Loops
While Loops produce default  data when the shift register is not initialized. 

For Loops produce default data if you wire 0 to the count terminal of the 
For Loop or if you wire an empty array to the For Loop as an input with 
auto-indexing enabled. The loop does not execute, and any output tunnel 
with auto-indexing disabled contains the default value for the tunnel data 
type. Use shift registers to transfer values through a loop regardless of 
whether the loop executes.

Refer to the LabVIEW Quick Reference Card for more information about 
default values for data types.

Case, Sequence, and Event Structures
Case, Stacked Sequence, Flat Sequence, and Event structures contain 
multiple subdiagrams. A Case structure executes one subdiagram 
depending on the input value passed to the structure. A Stacked Sequence 
structure and a Flat Sequence structure execute all their subdiagrams in 
sequential order. An Event structure executes its subdiagrams depending 
on how the user interacts with the VI.

Case Structures
A Case structure, shown as follows, has two or more subdiagrams, or cases.

Only one subdiagram is visible at a time, and the structure executes only 
one case at a time. An input value determines which subdiagram executes. 
The Case structure is similar to switch statements or if...then...else 
statements in text-based programming languages.



Chapter 8 Loops and Structures

LabVIEW Fundamentals 8-12 ni.com

The case selector label at the top of the Case structure, shown as follows, 
contains the name of the selector value that corresponds to the case in the 
center and decrement and increment arrows on each side.

Click the decrement and increment arrows to scroll through the available 
cases. You also can click the down arrow next to the case name and select 
a case from the pull-down menu.

Wire an input value, or selector, to the selector terminal, shown as follows, 
to determine which case executes.

You must wire an integer, Boolean value, string, or enumerated type value 
to the selector terminal. You can position the selector terminal anywhere on 
the left border of the Case structure. If the data type of the selector terminal 
is Boolean, the structure has a TRUE case and a FALSE case. If the selector 
terminal is an integer, string, or enumerated type value, the structure can 
have any number of cases.

Specify a default case for the Case structure to handle out-of-range values. 
Otherwise, you must explicitly list every possible input value. For example, 
if the selector is an integer and you specify cases for 1, 2, and 3, you must 
specify a default case to execute if the input value is 4 or any other 
unspecified integer value.

Case Selector Values and Data Types
You can enter a single value or lists and ranges of values in the case selector 
label. For lists, use commas to separate values. For numeric ranges, specify 
a range as 10..20, meaning all numbers from 10 to 20 inclusively. You 
also can use open-ended ranges. For example, ..100 represents all 
numbers less than or equal to 100, and 100.. represents all numbers 
greater than or equal to 100. You also can combine lists and ranges, for 
example ..5, 6, 7..10, 12, 13, 14. When you enter values that 
contain overlapping ranges in the same case selector label, the Case 
structure redisplays the label in a more compact form. The previous 
example redisplays as ..10, 12..14. For string ranges, a range of a..c 
includes all of a and b, but not c. A range of a..c,c includes the ending 
value of c.



Chapter 8 Loops and Structures

© National Instruments Corporation 8-13 LabVIEW Fundamentals

If you enter a selector value that is not the same type as the object wired to 
the selector terminal, the value appears red to indicate that you must delete 
or edit the value before the structure can execute, and the VI will not run. 
Also, because of the possible round-off error inherent in floating-point 
arithmetic, you cannot use floating-point numbers as case selector values. 
If you wire a floating-point value to the case, LabVIEW rounds the value 
to the nearest even integer. If you type a floating-point value in the case 
selector label, the value appears red to indicate that you must delete or edit 
the value before the structure can execute.

Input and Output Tunnels
You can create multiple input and output tunnels for a Case structure. 
Inputs are available to all cases, but cases do not have to use each input. 
However, you must define each output tunnel for each case. When you 
create an output tunnel in one case, tunnels appear at the same position on 
the border in all the other cases. If even one output tunnel is not wired, all 
output tunnels on the structure appear as white squares. You can define a 
different data source for the same output tunnel in each case, but the data 
types must be compatible for each case. You also can right-click the output 
tunnel and select Use Default If Unwired from the shortcut menu to use 
the default value for the tunnel data type for all unwired tunnels.

Using Case Structures for Error Handling
When you wire an error cluster to the selector terminal of a Case structure, 
the case selector label displays two cases—Error and No Error—and the 
border of the Case structure changes color—red for Error and green for 
No Error. If an error occurs, the Case structure executes the Error 
subdiagram.

Refer to the Handling Errors section of Chapter 6, Running and Debugging 
VIs, for more information about handling errors.

Sequence Structures
A sequence structure contains one or more subdiagrams, or frames, that 
execute in sequential order. Within each frame of a sequence structure, as 
in the rest of the block diagram, data dependency determines the execution 
order of nodes. Sequence structures are not used commonly in LabVIEW.

There are two types of sequence structures—the Flat Sequence structure 
and the Stacked Sequence structure.



Chapter 8 Loops and Structures

LabVIEW Fundamentals 8-14 ni.com

The Flat Sequence structure, shown as follows, displays all the frames at 
once and executes the frames from left to right and when all data values 
wired to a frame are available, until the last frame executes. The data values 
leave each frame as the frame finishes executing.

The Stacked Sequence structure, shown as follows, stacks each frame so 
you see only one frame at a time and executes frame 0, then frame 1, and 
so on until the last frame executes.

To take advantage of the inherent parallelism in LabVIEW, avoid overusing 
sequence structures. Sequence structures guarantee the order of execution 
and prohibit parallel operations. For example, asynchronous tasks that use 
I/O devices, such as PXI, GPIB, serial ports, and DAQ devices, can run 
concurrently with other operations if sequence structures do not prevent 
them from doing so.

When you need to control the execution order, consider establishing data 
dependency between the nodes. For example, you can use flow-through  
parameters such as error  I/O to control the execution order. 

Refer to the Handling Errors section of Chapter 6, Running and Debugging 
VIs, for more information about error I/O. Refer to the Flow-Through 
Parameters section of Chapter 5, Building the Block Diagram, for more 
information about flow-through parameters.



Chapter 8 Loops and Structures

© National Instruments Corporation 8-15 LabVIEW Fundamentals

Event Structures
An Event structure, shown as follows, has one or more subdiagrams, or 
event cases, exactly one of which executes when the structure executes.

The Event structure waits until an event happens, and then executes the 
appropriate case to handle that event. Events can originate from the user 
interface, external I/O, or other parts of the application. User interface 
events include mouse clicks, key presses, and so on. External I/O events 
include hardware timers or triggers that signal when data acquisition 
completes or when an error condition occurs. You can generate other types 
of events programmatically and use them to communicate with different 
parts of the application. LabVIEW supports user interface and 
programmatically generated events but does not support external I/O 
events.

Note The Event structure is available only in the LabVIEW Full and Professional 
Development Systems. You can run a VI built with event-driven programming features in 
the LabVIEW Base Package, but you cannot reconfigure the event-handling components.



© National Instruments Corporation 9-1 LabVIEW Fundamentals

9
Grouping Data Using Strings, 
Arrays, and Clusters

Use strings, arrays, and clusters to group data. Strings group sequences of 
ASCII characters. Arrays group data elements of the same type. Clusters 
group data elements of mixed types.

Grouping Data with Strings
A string is a sequence of displayable or non-displayable ASCII characters. 
Strings provide a platform-independent format for information and data. 
Some of the more common applications of strings include the following:

• Creating simple text messages.

• Passing numeric data as character strings to instruments and then 
converting the strings to numeric values.

• Storing numeric data to disk. To store numeric data in an ASCII file, 
you must first convert numeric data to strings before writing the data 
to a disk file.

• Instructing or prompting the user with dialog boxes.

On the front panel, strings appear as tables, text entry boxes, and labels. 
LabVIEW includes built-in VIs and functions you can use to manipulate 
strings, including formatting strings, parsing strings, and other editing.

Strings on the Front Panel
Use the string controls and indicators to simulate text entry boxes and 
labels.

Refer to the String Controls and Indicators section of Chapter 4, Building 
the Front Panel, for more information about string controls and indicators.



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW Fundamentals 9-2 ni.com

String Display Types
Right-click a string control or indicator on the front panel to select from the 
display types shown in the following table. The table also shows an 
example message in each display type.

Tables
Use the table control to create a table on the front panel. Each cell in a table 
is a string, and each cell resides in a column and a row. Therefore, a table 
is a display for a 2D array of strings. 

Refer to the Arrays section of this chapter for more information about 
arrays.

Display 
Type Description Message

Normal 
Display

Displays printable 
characters using the 
font of the control. 
Non-displayable 
characters generally 
appear as boxes.

There are four display types.
\ is a backslash.

‘\’ Codes 
Display

Displays  backslash 
codes for all 
non-displayable 
characters.

There\sare\sfour\sdisplay\stypes.\n\\\sis\sa\sbackslash.

Password 
Display

Displays  an asterisk 
(*) for each character 
including spaces.

****************************
*****************

Hex 
Display

Displays the  ASCII 
value of each character 
in hex instead of the 
character itself.

5468 6572 6520 6172 6520 666F 7572 2064 6973 706C 6179 2074 
7970 6573 2E0A 5C20 6973 2061 2062 6163 6B73 6C61 7368 2E



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-3 LabVIEW Fundamentals

Editing, Formatting, and Parsing Strings
Use the String functions to edit strings in ways similar to the following:

• Search for, retrieve, and replace characters or substrings within a 
string.

• Change all text in a string to upper case or lower case.

• Find and retrieve matching patterns within a string.

• Retrieve a line from a string.

• Rotate and reverse text within a string.

• Concatenate two or more strings.

• Delete characters from a string.

Refer to the LabVIEW Style Checklist in the LabVIEW Help for more 
information about minimizing memory usage when editing strings 
programmatically. Refer to the labview\examples\general\
strings.llb for examples of using the String functions to edit strings.

Formatting and Parsing Strings
To use data in another VI, function, or application, you often must convert 
the data to a string and then format the string in a way that the VI, function, 
or application can read. For example, Microsoft Excel expects strings that 
include delimiters, such as tabs, commas, or blank spaces. Excel uses the 
delimiter to segregate numbers or words into cells.

For example, to write a 1D array of numeric values to a spreadsheet using 
the Write to Binary File function, you must format the array into a string 
and separate each numeric with a delimiter, such as a tab. To write an array 
of numeric values to a spreadsheet using the Write To Spreadsheet File VI, 
you must format the array with the Array To Spreadsheet String function 
and specify a format and a delimiter.

Use the String functions to perform tasks similar to the following:

• Extract a subset of strings from a string.

• Convert data into strings.

• Format a string for use in a word processing or spreadsheet application.

Use the File I/O VIs and functions to save strings to text and spreadsheet 
files.



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW Fundamentals 9-4 ni.com

Format Specifiers
In many cases, you must enter one or more format specifiers in the format 
string parameter of a String function to format a string. A format specifier 
is a code that indicates how to convert numeric data to or from a string. 
LabVIEW uses conversion codes to determine the textual format of the 
parameter. For example, a format specifier of %x converts a hex integer to 
or from a string.

Grouping Data with Arrays and Clusters
Use the array and cluster controls and functions to group data. Arrays group 
data elements of the same type. Clusters group data elements of mixed 
types.

Arrays
An array consists of elements and dimensions. Elements are the data 
that make up the array. A dimension is the length, height, or depth of 
an array. An array can have one or more dimensions and as many as 
(231) – 1 elements per dimension, memory permitting.

You can build arrays of numeric, Boolean, path, string, waveform, and 
cluster data types. Consider using arrays when you work with a collection 
of similar data and when you perform repetitive computations. Arrays are 
ideal for storing data you collect from waveforms or data generated in 
loops, where each iteration of a loop produces one element of the array.

Restrictions
You cannot create arrays of arrays. However, you can use a 
multidimensional array or create an array of clusters where each cluster 
contains one or more arrays. Also, you cannot create an array of subpanel 
controls, tab controls, .NET controls, ActiveX controls, charts, or multiplot 
XY graphs.

Refer to the Clusters section of this chapter for more information about 
clusters.

Indexes
To locate a particular element in an array requires one index per dimension. 
In LabVIEW, indexes let you navigate through an array and retrieve 
elements, rows, columns, and pages from an array on the block diagram.



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-5 LabVIEW Fundamentals

Examples of Arrays
An example of a simple array is a text array that lists the nine planets of our 
solar system. LabVIEW represents this as a 1D array of strings with nine 
elements.

Array elements are ordered. An array uses an index so you can readily 
access any particular element. The index is zero-based, which means it is 
in the range 0 to n – 1, where n is the number of elements in the array. For 
example, n = 9 for the nine planets, so the index ranges from 0 to 8. Earth 
is the third planet, so it has an index of 2. 

Another example of an array is a waveform represented as a numeric array 
in which each successive element is the voltage value at successive time 
intervals, as shown in the following figure.

A more complex example of an array is a graph represented as an array of 
points where each point is a cluster containing a pair of numeric values that 
represent the X and Y coordinates, as shown in the following figure.

Volts 0.4 0.9 1.4 0.8 –0.1 –0.7 –0.3 0.3 0.2
Index 0 1 2 3 4 5 6 7 8

X Coord 0.4 2.2 3.3 3.2 2.4 1.8 1.9

Y Coord 0.2 0.5 1.3 2.3 2.6 1.9 1.2

Index 0 1 2 3 4 5 6

Index 0 1 2 3 4 5 6



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW Fundamentals 9-6 ni.com

The previous examples use 1D arrays. A 2D array stores elements in a grid. 
It requires a column index and a row index to locate an element, both of 
which are zero-based. The following figure shows an 8 column by 8 row 
2D array, which contains 8 × 8 = 64 elements.

For example, a chessboard has eight columns and eight rows for a total of 
64 positions. Each position can be empty or have one chess piece. You can 
represent a chessboard as a 2D array of strings. Each string is the name of 
the piece that occupies the corresponding location on the board or an empty 
string if the location is empty.

You can generalize the previous 1D array examples to two dimensions by 
adding a row to the array. The following figure shows a collection of 
waveforms represented as a 2D array of numeric values. The row index 
selects the waveform, and the column index selects the point on the 
waveform.

Refer to the labview\examples\general\arrays.llb for examples 
of using arrays.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Column Index

R
ow

 In
de

x

0 0.4 0.9 1.4 0.8 –0.1 –0.7 –0.3 0.3 0.2
1 –0.1 0.6 0.4 0.2 0.8 1.6 1.4 0.9 1.1

  2 1.6 1.4 0.7 0.5 –0.5 –0.6 –0.2 0.3 0.5

0 1 2 3 4 5 6 7 8



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-7 LabVIEW Fundamentals

Creating Array Controls, Indicators, and Constants
Create an array control or indicator on the front panel by placing an array 
shell on the front panel, as shown in the following figure, and dragging a 
data object or element, which can be a numeric, Boolean, string, path, 
refnum, or cluster control or indicator, into the array shell.

The array shell automatically resizes to accommodate the new object.

To create an array constant on the block diagram, select an array constant 
on the Functions palette, place the array shell on the block diagram, and 
place a string constant, numeric constant, or cluster constant in the array 
shell. You can use an array constant to store constant data or as a basis for 
comparison with another array.

Creating Multidimensional Arrays
To create a multidimensional array on the front panel, right-click the index 
display and select Add Dimension from the shortcut menu. You also can 
resize the index display until you have as many dimensions as you want. To 
delete dimensions one at a time, right-click the index display and select 
Remove Dimension from the shortcut menu. You also can resize the index 
display to delete dimensions.

To display a particular element on the front panel, either type the index 
number in the index display or use the arrows on the index display to 
navigate to that number.

For example, a 2D array contains rows and columns. As shown in the 
following figure, the upper display of the two boxes on the left is the row 
index and the lower display is the column index. The combined display to 
the right of the row and column displays shows the value at the specified 
position. The following figure shows that the value at row 6, column 13, 
is 66.



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW Fundamentals 9-8 ni.com

Rows and columns are zero-based, meaning the first column is column 0, 
the second column is column 1, and so on. Changing the index display for 
the following array to row 1, column 2 displays a value of 6.

If you try to display a column or row that is out of the range of the array 
dimensions, the array control appears dimmed to indicate that there is no 
value defined, and LabVIEW displays the default value of the data type. 
The default value of the data type depends on the data type of the array.

Use the Positioning tool to resize the array to show more than one row or 
column at a time.

Array Functions
Use the Array functions to create and manipulate arrays. For example, you 
can perform tasks similar to the following:

• Extract individual data elements from an array.

• Insert, delete, or replace data elements in an array.

• Split arrays.

Use the Build Array function to build an array programmatically. You also 
can use a loop to build an array.

Refer to the Using Loops to Build Arrays section of Chapter 8, Loops and 
Structures, for information about using loops to build arrays.

Refer to the LabVIEW Style Checklist in the LabVIEW Help for more 
information about minimizing memory usage when using Array functions 
in a loop.

1 Row index
2 Column index

3 Value at row, column

0 1 2 3

4 5 6 7

8 9 10 11

1

2

3



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-9 LabVIEW Fundamentals

Automatically Resizing Array Functions
The Index Array, Replace Array Subset, Insert Into Array, Delete From 
Array, and Array Subset functions automatically resize to match the 
dimensions of the input array you wire. For example, if you wire a 1D array 
to one of these functions, the function shows a single index input. If you 
wire a 2D array to the same function, it shows two index inputs—one for 
the row and one for the column.

You can access more than one element, or subarray (row, column, or page), 
with these functions by using the Positioning tool to manually resize the 
function. When you expand one of these functions, the functions expand in 
increments determined by the dimensions of the array wired to the function. 
If you wire a 1D array to one of these functions, the function expands by a 
single index input. If you wire a 2D array to the same function, the function 
expands by two index inputs—one for the row and one for the column.

The index inputs you wire determine the shape of the subarray you want to 
access or modify. For example, if the input to an Index Array function is a 
2D array and you wire only the row input, you extract a complete 1D row 
of the array. If you wire only the column input, you extract a complete 
1D column of the array. If you wire the row input and the column input, you 
extract a single element of the array. Each input group is independent and 
can access any portion of any dimension of the array.

The block diagram shown in the following figure uses the Index Array 
function to retrieve a row and an element from a 2D array. 

To access multiple consecutive values in an array, expand the Index Array 
function, but do not wire values to the index inputs in each increment. For 
example, to retrieve the first, second, and third rows from a 2D array, 
expand the Index Array function by three increments and wire 1D array 
indicators to each sub-array output.



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW Fundamentals 9-10 ni.com

Default Data in Arrays
Indexing beyond the bounds of an array produces the default value for the 
array element parameter. You can use the Array Size function to determine 
the size of the array.

You can index beyond the bounds of an array inadvertently by indexing an 
array past the last element using a While Loop, by supplying too large a 
value to the index input of an Index Array function, or by supplying an 
empty array to an Index Array function.

Refer to the Auto-Indexing Loops section of Chapter 8, Loops and 
Structures, for more information about indexing. Refer to the LabVIEW 
Quick Reference Card for more information about default values for data 
types.

Clusters
Clusters group data elements of mixed types. An example of a cluster is the 
LabVIEW error cluster, which combines a Boolean value, a numeric value, 
and a string. A cluster is similar to a record or a struct in text-based 
programming languages.

Refer to the Error Clusters section of Chapter 6, Running and Debugging 
VIs, for more information about using error clusters.

Bundling several data elements into clusters eliminates wire clutter on the 
block diagram and reduces the number of connector pane terminals that 
subVIs need. The connector pane has, at most, 28 terminals. If your front 
panel contains more than 28 controls and indicators that you want to pass 
to another VI, group some of them into a cluster and assign the cluster to a 
terminal on the connector pane.

Most clusters on the block diagram have a pink wire pattern and data type 
terminal. Clusters of numeric values, sometimes referred to as points, have 
a brown wire pattern and data type terminal. You can wire brown numeric 
clusters to Numeric functions, such as Add or Square Root, to perform the 
same operation simultaneously on all elements of the cluster.

Order of Cluster Elements
Although cluster and array elements are both ordered, you must unbundle 
all cluster elements at once or use the Unbundle By Name function to 
access specific cluster elements. Clusters also differ from arrays in that they 
are a fixed size. Like an array, a cluster is either a control or an indicator. 
A cluster cannot contain a mixture of controls and indicators.



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

© National Instruments Corporation 9-11 LabVIEW Fundamentals

Cluster elements have a logical order unrelated to their position in the shell. 
The first object you place in the cluster is element 0, the second is element 
1, and so on. If you delete an element, the order adjusts automatically. The 
cluster order determines the order in which the elements appear as 
terminals on the Bundle and Unbundle functions on the block diagram. You 
can view and modify the cluster order by right-clicking the cluster border 
and selecting Reorder Controls In Cluster from the shortcut menu.

To wire clusters to each other, both clusters must have the same number of 
elements. Corresponding elements, determined by the cluster order, must 
have compatible data types. For example, if a double-precision 
floating-point numeric value in one cluster corresponds in cluster order to 
a string in the another cluster, the wire on the block diagram appears broken 
and the VI does not run. If the numeric values are different representations, 
LabVIEW coerces them to the same representation.

Cluster Functions
Use the Cluster functions to create and manipulate clusters. For example, 
you can perform tasks similar to the following:

• Extract individual data elements from a cluster.

• Add individual data elements to a cluster.

• Break a cluster out into its individual data elements.

Creating Cluster Controls, Indicators, and Constants
Create a cluster control or indicator on the front panel by placing a cluster 
shell on the front panel, as shown in the following figure, and dragging a 
data object or element, which can be a numeric, Boolean, string, path, 
refnum, array, or cluster control or indicator, into the cluster shell.



Chapter 9 Grouping Data Using Strings, Arrays, and Clusters

LabVIEW Fundamentals 9-12 ni.com

To create a cluster constant on the block diagram, select a cluster constant 
on the Functions palette, place the cluster shell on the block diagram, and 
place a string constant, numeric constant, or cluster constant in the cluster 
shell. You can use a cluster constant to store constant data or as a basis for 
comparison with another cluster.



© National Instruments Corporation 10-1 LabVIEW Fundamentals

10
Graphs and Charts

After you acquire or generate data, use a graph or chart to display data in a 
graphical form.

Graphs and charts differ in the way they display and update data. VIs with 
a graph usually collect the data in an array and then plot the data to the 
graph. This process is similar to a spreadsheet that first stores the data then 
generates a plot of it. When the data is plotted, the graph discards the 
previous data and displays only the new data. You typically use a graph 
with fast processes that acquire data continuously.

In contrast, a chart appends new data points to those points already in the 
display to create a history. On a chart, you can see the current reading or 
measurement in context with data previously acquired. When more data 
points are added than can be displayed on the chart, the chart scrolls so that 
new points are added to the right side of the chart while old points disappear 
to the left. You typically use a chart with slow processes in which only a 
few data points per second are added to the plot.

Types of Graphs and Charts
LabVIEW includes the following types of graphs and charts:

• Waveform Graphs and Charts—Display data typically acquired at a 
constant rate.

• XY Graphs—Display data acquired at a non-constant rate and data for 
multivalued functions.

• Intensity Graphs and Charts—Display 3D data on a 2D plot by 
using color to display the values of the third dimension.

• Digital Waveform Graphs—Display data as pulses or groups of 
digital lines.

• (Windows) 3D Graphs—Display 3D data on a 3D plot in an ActiveX 
object on the front panel.

Refer to labview\examples\general\graphs for examples of graphs 
and charts.



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-2 ni.com

Waveform Graphs and Charts
LabVIEW includes the waveform graph and chart to display data typically 
acquired at a constant rate.

Waveform Graphs
The waveform graph displays one or more plots of evenly sampled 
measurements. The waveform graph plots only single-valued functions, as 
in y = f(x), with points evenly distributed along the x-axis, such as acquired 
time-varying waveforms. The following figure shows an example of a 
waveform graph.

The waveform graph can display plots containing any number of points. 
The graph also accepts several data types, which minimizes the extent to 
which you must manipulate data before you display it.

Note Use the digital waveform graph to display digital data. Refer to the Digital 
Waveform Graphs section of this chapter for more information about the digital waveform 
graph and the data types it accepts.

Refer to the Waveform Graph VI in the labview\examples\general\
graphs\gengraph.llb for examples of the data types that a waveform 
graph accepts.



Chapter 10 Graphs and Charts

© National Instruments Corporation 10-3 LabVIEW Fundamentals

Waveform Charts
The waveform chart is a special type of numeric indicator that displays one 
or more plots of data typically acquired at a constant rate. The following 
figure shows an example of a waveform chart.

The waveform chart maintains a history of data, or buffer, from previous 
updates. Right-click the chart and select Chart History Length from the 
shortcut menu to configure the buffer. The default chart history length for a 
waveform chart is 1,024 data points. The frequency at which you send data 
to the chart determines how often the chart redraws.

Refer to the labview\examples\general\graphs\charts.llb for 
examples of the waveform chart.

Waveform Data Type
The waveform data type carries the data, start time, and delta t of a 
waveform. You can create a waveform using the Build Waveform function. 
Many of the VIs and functions you use to acquire or analyze waveforms 
accept and return waveform data by default. When you wire waveform data 
to a waveform graph or chart, the graph or chart automatically plots a 
waveform based on the data, start time, and delta x of the waveform. When 
you wire an array of waveform data to a waveform graph or chart, the graph 
or chart automatically plots all waveforms.

Refer to the Digital Waveform Data Type section of this chapter for more 
information about the digital waveform data type.

XY Graphs
The XY graph is a general-purpose, Cartesian graphing object that plots 
multivalued functions, such as circular shapes or waveforms with a varying 
time base. The XY graph displays any set of points, evenly sampled or not.



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-4 ni.com

You also can display Nyquist planes, Nichols planes, S planes, and Z planes 
on the XY graph. Lines and labels on these planes are the same color as the 
Cartesian lines, and you cannot modify the plane label font.

The following figure shows an example of an XY graph.

The XY graph can display plots containing any number of points. The XY 
graph also accepts several data types, which minimizes the extent to which 
you must manipulate data before you display it.

Refer to the XY Graph VI in the labview\examples\general\
graphs\gengraph.llb for an example of an XY graph.

Intensity Graphs and Charts
Use the intensity graph and chart to display 3D data on a 2D plot by placing 
blocks of color on a Cartesian plane. For example, you can use an intensity 
graph or chart to display patterned data, such as temperature patterns and 
terrain, where the magnitude represents altitude. The intensity graph and 
chart accept a 3D array of numbers. Each number in the array represents a 
specific color. The indexes of the elements in the 2D array set the plot 
locations for the colors. The following figure shows the concept of the 
intensity chart operation.



Chapter 10 Graphs and Charts

© National Instruments Corporation 10-5 LabVIEW Fundamentals

The rows of the data pass into the display as new columns on the graph or 
chart. If you want rows to appear as rows on the display, wire a 2D array 
data type to the graph or chart, right-click the graph or chart, and select 
Transpose Array from the shortcut menu.

The array indexes correspond to the lower left vertex of the block of color. 
The block of color has a unit area, which is the area between the two points, 
as defined by the array indexes. The intensity graph or chart can display up 
to 256 discrete colors.

Refer to the labview\examples\general\graphs\intgraph.llb 
for examples of intensity graphs and charts.

Intensity Charts
After you plot a block of data on an intensity chart, the origin of the 
Cartesian plane shifts to the right of the last data block. When the chart 
processes new data, the new data values appear to the right of the old data 
values. When a chart display is full, the oldest data values scroll off the left 
side of the chart. This behavior is similar to the behavior of a strip chart.

Input Array Color Map Definition
Column = y

Resulting Plot

Row = x

Array
Element

= z
Color

green

green

yellow

yellow

yellow

orange

orange

dk red

dk red

dk red

lt red

lt red

purple

purple

blue

blue

0 1

1

2 3

61

50

45

13

10

6

5

2

3

0

0

1

1

2

50 50 13

10

513

6145

62



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-6 ni.com

Refer to the Configuring Chart Update Modes section of this chapter for 
more information about the strip chart.

The following figure shows an example of an intensity chart.

The intensity chart shares many of the optional parts of the waveform chart, 
including the scale legend and graph palette, which you can show or hide 
by right-clicking the chart and selecting Visible Items from the shortcut 
menu. In addition, because the intensity chart includes color as a third 
dimension, a scale similar to a color ramp control defines the range and 
mappings of values to colors.

Refer to the Using Color Mapping with Intensity Graphs and Charts 
section of this chapter for information about color mapping.

Like the waveform chart, the intensity chart maintains a history of data, 
or buffer, from previous updates. Right-click the chart and select Chart 
History Length from the shortcut menu to configure the buffer. The default 
size for an intensity chart is 128 data points. The intensity chart display can 
be memory intensive.

Intensity Graphs
The intensity graph works the same as the intensity chart, except it does not 
retain previous data values and does not include update modes. Each time 
new data values pass to an intensity graph, the new data values replace old 
data values. Like other graphs, the intensity graph can have cursors. Each 
cursor displays the x, y, and z values for a specified point on the graph.

Refer to the Using Graph Cursors section of this chapter for information 
about cursors.



Chapter 10 Graphs and Charts

© National Instruments Corporation 10-7 LabVIEW Fundamentals

Using Color Mapping with Intensity Graphs and Charts
An intensity graph or chart uses color to display 3D data on a 2D plot. 
When you set the color mapping for an intensity graph or chart, you 
configure the color scale of the graph or chart. The color scale consists of 
at least two arbitrary markers, each with a numeric value and a 
corresponding display color. The colors displayed on an intensity graph or 
chart correspond to the numeric values associated with the specified colors. 
Color mapping is useful for visually indicating data ranges, such as when 
plot data exceeds a threshold value.

You can set the color mapping interactively for the intensity graph and chart 
the same way you define the colors for a color ramp numeric control.

Note The colors you want the intensity graph or chart to display are limited to the exact 
colors and number of colors your video card can display. You also are limited by the 
number of colors allocated for your display.

Refer to the Create IntGraph Color Table VI in the labview\examples\
general\graphs\intgraph.llb for an example of color mapping.

Digital Waveform Graphs
Use the digital waveform graph to display digital data, especially when you 
work with timing diagrams or logic analyzers.

The digital waveform graph accepts the digital waveform data type, the 
digital data type, and an array of those data types as an input. By default, 
the digital waveform graph collapses digital buses, so the graph plots digital 
data on a single plot. If you wire an array of digital data, the digital 
waveform graph plots each element of the array as a different plot in the 
order of the array.



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-8 ni.com

The digital waveform graph in the following front panel plots digital data 
on a single plot. The VI converts the numbers in the Numbers array to 
digital data and displays the binary representations of the numbers in the 
Binary Representations digital data indicator. In the digital graph, the 
number 0 appears without a top line to symbolize that all the bit values are 
zero. The number 255 appears without a bottom line to symbolize that all 
the bit values are 1.

Right-click the y-scale and select Expand Digital Buses from the shortcut 
menu to plot each sample of digital data. Each plot represents a different bit 
in the digital pattern.



Chapter 10 Graphs and Charts

© National Instruments Corporation 10-9 LabVIEW Fundamentals

The digital waveform graph in the following front panel displays the 
six numbers in the Numbers array.

The Binary Representations digital indicator displays the binary 
representations of the numbers. Each column in the table represents a bit. 
For example, the number 89 requires 7 bits of memory (the 0 in column 7 
indicates an unused bit). Point 3 on the digital waveform graph plots the 
7 bits necessary to represent the number 89 and a value of 0 to represent the 
unused eighth bit on plot 7.

The following VI converts an array of numbers to digital data and uses the 
Build Waveform function to assemble the start time, delta t, and the 
numbers entered in a digital data control and to display the digital data.



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-10 ni.com

Refer to the Digital Data Control section of Chapter 4, Building the Front 
Panel, for more information about the digital data control.

Refer to the labview\examples\general\graphs\DWDT 
Graphs.llb for examples of the digital waveform graph.

Digital Waveform Data Type
The digital waveform data type carries start time, delta x, the data, and the 
attributes of a digital waveform. You can use the Build Waveform function 
to create a digital waveform. When you wire digital waveform data to the 
digital waveform graph, the graph automatically plots a waveform based on 
the timing information and data of the digital waveform. Wire digital 
waveform data to a digital data indicator to view the samples and signals of 
a digital waveform.

Refer to the Waveform Data Type section of this chapter for more 
information about the waveform data type.

3D Graphs
For many real-world data sets, such as the temperature distribution on a 
surface, joint time-frequency analysis, and the motion of an airplane, you 
need to visualize data in three dimensions. With the 3D graphs, you can 
visualize three-dimensional data and alter the way that data appears by 
modifying the 3D graph properties.

Note The 3D graph controls are available only on Windows in the LabVIEW Full and 
Professional Development Systems. 

LabVIEW includes the following types of 3D graphs:

• 3D Surface Graph—Draws a surface in 3D space.

• 3D Parametric Surface Graph—Draws a parametric surface in 
3D space.

• 3D Curve Graph—Draws a line in 3D space.

Use the 3D graphs in conjunction with the 3D Graph VIs to plot curves and 
surfaces. A curve contains individual points on the graph, each point having 
an x, y, and z coordinate. The VI then connects these points with a line. A 
curve is ideal for visualizing the path of a moving object, such as the flight 
path of an airplane. The following figure shows an example of a 3D curve 
graph.



Chapter 10 Graphs and Charts

© National Instruments Corporation 10-11 LabVIEW Fundamentals

A surface plot uses x, y, and z data to plot points on the graph. The surface 
plot then connects these points, forming a three-dimensional surface view 
of the data. For example, you could use a surface plot for terrain mapping. 
The following figure shows examples of a 3D surface graph and a 
3D parametric surface graph.



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-12 ni.com

The 3D graphs use ActiveX technology and VIs that handle 
3D representation. When you select a 3D graph, LabVIEW places an 
ActiveX container on the front panel that contains a 3D graph control. 
LabVIEW also places a reference to the 3D graph control on the block 
diagram. LabVIEW wires this reference to one of the three 3D Graph VIs.



Chapter 10 Graphs and Charts

© National Instruments Corporation 10-13 LabVIEW Fundamentals

Customizing Graphs and Charts 
Each graph and chart includes many options that you can use to customize 
appearance, convey more information, or highlight data. Although graphs 
and charts plot data differently, they have several common options that you 
access from the shortcut menu. However, some options are available only 
for a specific type of graph or chart.

Refer to the Customizing Graphs and Customizing Charts sections of this 
chapter for more information about the options that are available only on 
graphs or only on charts.

Using Multiple X- and Y-Scales
All graphs support multiple x- and y-scales, and all charts support multiple 
y-scales. Use multiple scales on a graph or chart to display multiple plots 
that do not share a common x- or y-scale. Right-click the scale of the graph 
or chart and select Duplicate Scale from the shortcut menu to add multiple 
scales to the graph or chart.

Autoscaling
All graphs and charts can automatically adjust their horizontal and vertical 
scales to fit the data you wire to them. This behavior is called autoscaling. 
Right-click the graph or chart and select X Scale»AutoScale X or 
Y Scale»AutoScale Y from the shortcut menu to turn autoscaling on or 
off. By default, autoscaling is enabled for the graph or chart. However, 
autoscaling can slow performance.

Use the Operating tool or the Labeling tool to change the horizontal or 
vertical scale directly.

Formatting X- and Y-Scales
Use the Format and Precision page of the Properties dialog box to 
specify how the scales of the x-axis and y-axis appear on the graph or chart.

By default, the x-scale is configured to use floating-point notation and have 
a label of Time, and the y-scale is configured to use automatic formatting 
and have a label of Amplitude. To configure the scales for the graph or 
chart, right-click the graph or chart and select Properties from the shortcut 
menu to display the Graph Properties dialog box or Chart Properties 
dialog box.



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-14 ni.com

Use the Format and Precision page of the Properties dialog box to 
specify a numeric format for the scales of a graph or chart. Click the Scales 
tab to rename the scale and to format the appearance of the axis scale. By 
default, a graph or chart scale displays up to six digits before automatically 
switching to exponential notation.

On the Format and Precision page, select Advanced editing mode to 
display the text options that let you enter format strings directly. Enter 
format strings to customize the appearance and numeric precision of the 
scales.

Using the Graph Palette
Use the graph palette, shown as follows, to interact with a graph or chart 
while the VI is running.

With the graph palette, you can move cursors, zoom, and pan the display. 
Right-click the graph or chart and select Visible Items»Graph Palette 
from the shortcut menu to display the graph palette. The graph palette 
appears with the following buttons, in order from left to right:

• Cursor Movement Tool (graph only)—Moves the cursor on the 
display.

• Zoom—Zooms in and out of the display.

• Panning Tool—Picks up the plot and moves it around on the display.

Click a button in the graph palette to enable moving the cursor, zooming the 
display, or panning the display. Each button displays a green LED when it 
is enabled.



Chapter 10 Graphs and Charts

© National Instruments Corporation 10-15 LabVIEW Fundamentals

Customizing Graph and Chart Appearance
Customize the appearance of a graph or chart by showing or hiding options. 
Right-click the graph or chart and select Visible Items from the shortcut 
menu to display or hide the following options:

• Plot Legend—Defines the color and style of plots. Resize the legend 
to display multiple plots.

• Scale Legend—Defines labels for scales and configures scale 
properties.

• Graph Palette—Allows you to move the cursor and zoom and pan the 
graph or chart while a VI runs.

• X Scale and Y Scale—Formats the x- and y-scales.

Refer to the Formatting X- and Y-Scales section of this chapter for 
more information about formatting scales.

• Cursor Legend (graph only)—Displays a marker at a defined point 
coordinate. You can display multiple cursors on a graph.

• X Scrollbar—Scrolls through the data in the graph or chart. Use the 
scroll bar to view data that the graph or chart does not currently 
display.

• Digital Display (waveform chart only)—Displays the numeric value 
of the chart.

Customizing Graphs
Each graph includes options that you can use to customize the graph to 
match your data display requirements. For example, you can modify the 
behavior and appearance of graph cursors or configure graph scales. The 
following figure shows the elements of a graph.



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-16 ni.com

You add most of the items listed in the legend above by right-clicking the 
graph, selecting Visible Items from the shortcut menu, and selecting the 
appropriate element. Right-click the graph and select the option from the 
shortcut menu to set the graph option.

Using Graph Cursors
Use a cursor on a graph to read the exact value of a point on a plot or a point 
in the plot area. The cursor value displays in the cursor legend.

Right-click the graph and select Visible Items»Cursor Legend from the 
shortcut menu to view the cursor legend. Add a cursor to the graph by 
right-clicking anywhere in the cursor legend, selecting Create Cursor, and 
selecting a cursor mode from the shortcut menu.

The cursor position is defined by the cursor mode. The cursor includes the 
following modes:

• Free—Moves the cursor freely within the plot area, regardless of plot 
positions.

• Single-Plot—Positions the cursor only on the plot that is associated 
with the cursor. You can move the cursor along the associated plot. 

1 Plot legend
2 Cursor
3 Scale legend

4 Cursor mover
5 Cursor legend
6 Minor-grid mark

7 Grid mark
8 X-scale
9 Graph palette

10 Y-scale
11 Label

1

2 3

4

5678
9

11

10



Chapter 10 Graphs and Charts

© National Instruments Corporation 10-17 LabVIEW Fundamentals

Right-click the cursor legend row and select Snap To from the shortcut 
menu to associate one or all plots with the cursor.

• Multi-Plot—Positions the cursor only on a specific data point in the 
plot area. The multi-plot cursor reports values at the specified x-value 
for all of the plots with which the cursor is associated. You can position 
the cursor on any plot in the plot area. Right-click the cursor legend 
row and select Snap To from the shortcut menu to associate one or all 
plots with the cursor. This mode is valid only for mixed signal graphs.

Note You cannot change the mode of a cursor after you create it. You must delete the 
cursor and create another cursor.

You can customize the appearance of the cursor in several ways. You can 
label the cursor on the plot, specify the color of the cursor, and specify line, 
point, and cursor style. Right-click the cursor legend row and select items 
from the shortcut menu to customize the cursor.

Using Graph Annotations
Use annotations on a graph to highlight data points in the plot area. The 
annotation includes a label and an arrow that identifies the annotation and 
data point. A graph can have any number of annotations. The following 
figure shows an example of a graph using annotations.

Right-click the graph and select Data Operations»Create Annotation 
from the shortcut menu to display the Create Annotation dialog box. Use 
the Create Annotation dialog box to specify the annotation name and how 
the annotation snaps to plots in the plot area.



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-18 ni.com

Use the Lock Style pull-down menu in the Create Annotation dialog box 
to specify how the annotation snaps to plots in the plot area. The Lock Style 
component includes the following options: 

• Free—Allows you to move the annotation anywhere in the plot area. 
LabVIEW does not snap the annotation to any plots in the plot area.

• Snap to All Plots—Allows you to move the annotation to the nearest 
data point along any plot in the plot area.

• Snap to One Plot—Allows you to move the annotation only along the 
specified plot.

You can customize the behavior and appearance of the annotation in several 
ways. You can hide or show the annotation name or arrow in the plot area, 
specify the color of the annotation, and specify line, point, and annotation 
style. Right-click the annotation and select options from the shortcut menu 
to customize the annotation. 

To delete the annotation, right-click the annotation and select Delete 
Annotation from the shortcut menu. Right-click the graph and select Data 
Operations»Delete All Annotations from the shortcut menu to delete all 
annotations in the plot area.

Customizing 3D Graphs
The 3D graphs have many options that you can use to customize them, 
including 3D plot styles, scale formatting, grids, and plot projection. 
Because the 3D graphs use ActiveX technology and VIs that handle 
3D representation, you set options for the 3D graphs differently than you 
set options for other graphs. While creating an application, use the ActiveX 
Property Browser to set properties for a 3D graph. Right-click the 3D graph 
and select Property Browser from the shortcut menu to display the 
ActiveX Property Browser.

If you want to allow users to change common properties at run time or you 
need to set a property programmatically, use the 3D Graph Properties VIs.

Customizing Charts
Unlike the graph, which displays new data that overwrites any stored data, 
the chart updates periodically and maintains a history of the data previously 
stored.

You can customize the chart to match your data display requirements. 
Options available for all charts include a scroll bar, the scale legend, the 
graph palette, a digital display, and representation of scales with respect to 



Chapter 10 Graphs and Charts

© National Instruments Corporation 10-19 LabVIEW Fundamentals

time. You also can modify the behavior of chart history length, update 
modes, and plot displays.

Configuring Chart History Length
LabVIEW stores data points already added to the chart in a buffer, or the 
chart history. The default size for a chart history buffer is 1,024 data points. 
Right-click the chart and select Chart History Length from the shortcut 
menu to configure the history buffer. You can view previously collected 
data using the chart scroll bar. Right-click the chart and select Visible 
Items»X Scrollbar from the shortcut menu to display a scroll bar.

Note Large chart history values can be memory intensive.

Configuring Chart Update Modes
You can configure how the chart updates to display new data. Right-click 
the chart and select Advanced»Update Mode from the shortcut menu to 
set the chart update mode. The chart uses the following modes to display 
data:

• Strip Chart—Shows running data continuously scrolling from left to 
right across the chart with old data on the left and new data on the right. 
A strip chart is similar to a paper tape strip chart recorder. Strip Chart 
is the default update mode.

• Scope Chart—Shows one item of data, such as a pulse or wave, 
scrolling partway across the chart from left to right. For each new 
value, the chart plots the value to the right of the last value. When the 
plot reaches the right border of the plotting area, LabVIEW erases the 
plot and begins plotting again from the left border. The retracing 
display of a scope chart is similar to an oscilloscope.

• Sweep Chart—Works similarly to a scope chart except it shows the 
old data on the right and the new data on the left separated by a vertical 
line. LabVIEW does not erase the plot in a sweep chart when the plot 
reaches the right border of the plotting area. A sweep chart is similar 
to an EKG display.



Chapter 10 Graphs and Charts

LabVIEW Fundamentals 10-20 ni.com

Using Overlaid and Stacked Plots
You can display multiple plots on a chart by using a single vertical scale, 
called overlaid plots, or by using multiple vertical scales, called stacked 
plots. The following figure shows examples of overlaid plots and stacked 
plots.

Right-click the chart and select Stack Plots from the shortcut menu to view 
the chart plots as multiple vertical scales. Right-click the chart and select 
Overlay Plots to view the chart plots as a single vertical scale.

Refer to the Charts VI in the labview\examples\general\graphs\
charts.llb for examples of different kinds of charts and the data types 
they accept.



© National Instruments Corporation 11-1 LabVIEW Fundamentals

11
File I/O

File I/O operations pass data to and from files. Use the File I/O VIs and 
functions on the File I/O palette to handle all aspects of file I/O, including 
the following:

• Opening and closing data files.

• Reading data from and writing data to files.

• Reading from and writing to spreadsheet-formatted files.

• Moving and renaming files and directories.

• Changing file characteristics.

• Creating, modifying, and reading a configuration file.

You can open, read or write, and close a file using a single VI or function. 
You also can use a function to control each step in the process. Use the Read 
From Measurement File Express VI and the Write To Measurement File 
Express VI to read data from and write data to .lvm or .tdm files.

Refer to the Using Storage VIs section of this chapter for more information 
about .tdm files.

Basics of File I/O  
A typical file I/O operation involves the following process.

1. Create or open a file. Indicate where an existing file resides or where 
you want to create a new file by specifying a path or responding to a 
dialog box to direct LabVIEW to the file location. After the file opens, 
a refnum represents the file.

Refer to the References to Objects or Applications section of 
Chapter 4, Building the Front Panel, for more information about 
refnums.

2. Read from or write to the file.

3. Close the file.

File I/O VIs and some File I/O functions, such as the Read from Text File 
and Write to Text File functions, can perform all three steps for common 



Chapter 11 File I/O

LabVIEW Fundamentals 11-2 ni.com

file I/O operations. The VIs and functions designed for multiple operations 
might not be as efficient as the functions configured or designed for 
individual operations.

Many File I/O VIs and functions contain flow-through parameters, 
typically a refnum or path, that return the same value as the corresponding 
input parameter.

Refer to the Flow-Through Parameters section of Chapter 5, Building the 
Block Diagram, for more information about flow-through parameters.

Choosing a File I/O Format
The VIs on the File I/O palette you use depend on the format of the files. 
You can read data from or write data to files in three formats—text, binary, 
and datalog. The format you use depends on the data you acquire or create 
and the applications that will access that data.

Use the following basic guidelines to determine which format to use:

• If you want to make your data available to other applications, such as 
Microsoft Excel, use text files because they are the most common and 
the most portable.

• If you need to perform random access file reads or writes or if speed 
and compact disk space are crucial, use binary files because they are 
more efficient than text files in disk space and in speed.

• If you want to manipulate complex records of data or different data 
types in LabVIEW, use datalog files because they are the best way to 
store data if you intend to access the data only from LabVIEW and you 
need to store complex data structures.

Text files typically take up more memory than binary and datalog files if the 
data is not originally in text form, such as graph or chart data, because the 
ASCII representation of data usually is larger than the data itself. For 
example, you can store the number –123.4567 in 4 bytes as a 
single-precision floating-point number. However, its ASCII representation 
takes 9 bytes, one for each character. 

In addition, it is difficult to randomly access numeric data in text files. 
Although each character in a string takes up exactly 1 byte of space, the 
space required to express a number as text typically is not fixed. To find the 
ninth number in a text file, LabVIEW must first read and convert the 
preceding eight numbers.



Chapter 11 File I/O

© National Instruments Corporation 11-3 LabVIEW Fundamentals

Using VIs and Functions for Common File I/O Operations
The File I/O palette includes VIs and functions designed for common file 
I/O operations, such as writing to or reading from the following types of 
data:

• Numeric values to or from spreadsheet text files

• Characters to or from text files

• Lines from text files

• Data to or from binary files

The following block diagram shows how to use the Write To Spreadsheet 
File VI to send numbers to a tab-delimited spreadsheet file. When you run 
this VI, LabVIEW prompts you to write the data to an existing file or to 
create a new file.

The open, read, and write functions expect a file path input. If you do not 
wire a file path, a dialog box appears for you to specify a file to read from 
or write to.

The File I/O palette includes functions to control each file I/O operation 
individually. Use these functions to create or open a file, read data from or 
write data to the file, and close the file. You also can use them to perform 
the following tasks:

• Create directories.

• Move, copy, or delete files.

• List directory contents.

• Change file characteristics.

• Manipulate paths.



Chapter 11 File I/O

LabVIEW Fundamentals 11-4 ni.com

A path, shown as follows, is a LabVIEW data type that identifies the 
location of a file on disk.

The path describes the volume that contains the file, the directories between 
the top-level of the file system and the file, and the name of the file. Enter 
or display a path using the standard syntax for a given platform with the 
path control or indicator.

Refer to the Path Controls and Indicators section of Chapter 4, Building 
the Front Panel, for more information about path controls and indicators.

The following block diagram shows how to use File I/O functions to send 
numeric data to a tab-delimited spreadsheet file. When you run this VI, the 
Open/Create/Replace File function opens the numbers.xls file. The 
Write to Text File function writes the string of numbers to the file. The 
Close File function closes the file. If you do not close the file, the file stays 
in memory and is not accessible from other applications or to other users.

Compare the previous block diagram to the Write to Spreadsheet VI, which 
completes the same task. The previous block diagram uses individual 
functions for each file operation, including using the Array To Spreadsheet 
String function to format the array of numbers as a string. The Write To 
Spreadsheet File VI completes multiple file operations, including opening 
the file, converting the array of numbers to a string, and closing the file.



Chapter 11 File I/O

© National Instruments Corporation 11-5 LabVIEW Fundamentals

Refer to the Write Datalog File Example VI in the labview\examples\
file\datalog.llb for an example of using File I/O VIs and functions 
for advanced operations.

You also can use File I/O functions for disk streaming operations, which 
save memory resources by reducing the number of times the function 
interacts with the operating system to open and close the file. Disk 
streaming is a technique for keeping files open while you perform multiple 
write operations, for example, within a loop. Wiring a path control or a 
constant to the Write to Text File function, the Write to Binary File 
function, or the Write to Spreadsheet File VI adds the overhead of opening 
and closing the file each time the function or VI executes. VIs can be more 
efficient if you avoid opening and closing the same files frequently.

To create a typical disk-streaming operation, place the 
Open/Create/Replace File function before a loop, the read or write function 
in the loop, and the Close File function after the loop so continuous writing 
to a file can occur within the loop without the overhead associated with 
opening and closing the file in each iteration. 

Disk streaming is ideal in lengthy data acquisition operations where speed 
is critical. You can write data continuously to a file while acquisition is still 
in progress. For best results, avoid running other VIs and functions, such as 
Analysis VIs and functions, until you complete the acquisition.

Using Storage VIs
Use the Storage VIs on the Storage palette to read and write waveforms 
and waveform properties to binary measurement files (.tdm). Use .tdm 
files to exchange data between NI software, such as LabVIEW and 
DIAdem.

Note The Storage VIs are available only on Windows.

The Storage VIs combine waveforms and waveform properties to form 
channels. A channel group organizes a set of channels. A file includes a set 
of channel groups. If you store channels by name, you can quickly append 
data to or retrieve data from an existing channel. In addition to numeric 
values, the Storage VIs support arrays of strings and arrays of time stamps. 
A reference number represents files, channel groups, and channels on the 
block diagram.



Chapter 11 File I/O

LabVIEW Fundamentals 11-6 ni.com

You also can use the Storage VIs to query files to obtain channel groups or 
channels that meet conditions you specify.

If the system requirements change during development and you need to add 
additional data to a file, you can change the format of the file without 
causing the file to become unusable.

Refer to the labview\examples\file\storage.llb for examples of 
using the Storage VIs.

You also can use the Read From Measurement File Express VI and the 
Write To Measurement File Express VI to read data from and write data 
to .tdm measurement files.

Creating Text and Spreadsheet Files
To write data to a text file, you must convert your data to a string. To write 
data to a spreadsheet file, you must format the string as a spreadsheet string, 
which is a string that includes delimiters, such as tabs.

Refer to the Formatting and Parsing Strings section of Chapter 9, 
Grouping Data Using Strings, Arrays, and Clusters, for more information 
about formatting strings.

Writing text to text files requires no formatting because most word 
processing applications that read text do not require formatted text. To write 
a text string to a text file, use the Write to Text File function, which 
automatically opens and closes the file.

Use the Write to Binary File function to create platform-independent text 
files. Use the Read from Binary File function to read platform-independent 
text files.

Refer to Creating Binary Files section for more information about binary 
files.

Use the Write To Spreadsheet File VI or the Array To Spreadsheet String 
function to convert a set of numbers from a graph, a chart, or an acquisition 
into a spreadsheet string.

Reading text from a word processing application might result in errors 
because word processing applications format text with different fonts, 
colors, styles, and sizes that the File I/O VIs cannot process.



Chapter 11 File I/O

© National Instruments Corporation 11-7 LabVIEW Fundamentals

If you want to write numbers and text to a spreadsheet or word processing 
application, use the String functions and the Array functions to format the 
data and to combine the strings. Then write the data to a file.

Refer to the Editing, Formatting, and Parsing Strings and Array Functions 
sections of Chapter 9, Grouping Data Using Strings, Arrays, and Clusters, 
for more information about using these functions to format and combine 
data.

Formatting and Writing Data to Files
Use the Format Into File function to format string, numeric, path, and 
Boolean data as text and to write the formatted text to a file. Often you can 
use this function instead of separately formatting  the string with the Format 
Into String function and writing the resulting string with the Write to Text 
File function.

Refer to the Formatting and Parsing Strings section of Chapter 9, 
Grouping Data Using Strings, Arrays, and Clusters, for more information 
about formatting strings. 

Scanning Data from Files
Use the Scan From File function to scan text in a file for string, numeric, 
path, and Boolean values and then convert the text into a data type. Often 
you can use this function instead of reading data from a file with the Read 
from Binary File function or Read from Text File function and scanning the 
resulting string with the Scan From String function.

Creating Binary Files
Use the Write to Binary File function to create a binary file. You can wire 
any data type to the data input of the Write to Binary File function. Use the 
Read from Binary File function to specify the data type of the data in the 
file you want to read by wiring a control or constant of that type to the data 
type input of the Read from Binary File function. You can use the Write to 
Binary File and Read from Binary File functions to read from and write to 
text files created on a different operating system.

Creating Datalog Files
You can create and read datalog files by using the Datalog functions on the 
Datalog palette to acquire data and write the data to a file.



Chapter 11 File I/O

LabVIEW Fundamentals 11-8 ni.com

You do not have to format the data in a datalog file. However, when you 
write or read datalog files, you must specify the data type. For example, if 
you acquire a temperature reading with the time and date the temperature 
was recorded, you write the data to a datalog file and specify the data as a 
cluster of one number and two strings. Refer to the Simple Temp 
Datalogger VI in the labview\examples\file\datalog.llb for an 
example of writing data to a datalog file.

If you read a file that includes a temperature reading with the time and date 
the temperature was recorded, you specify that you want to read a cluster 
of one number and two strings. Refer to the Simple Temp Datalog Reader 
VI in the labview\examples\file\datalog.llb for an example of 
reading a datalog file.

Writing Waveforms to Files
Use the Write Waveforms to File and Export Waveforms to Spreadsheet 
File VIs to send waveforms to files. You can write waveforms to 
spreadsheet, text, or datalog files. 

If you expect to use the waveform you create only in a VI, save the 
waveform as a datalog file (.log).

The following VI acquires multiple waveforms, displays them on a graph, 
and writes them to a spreadsheet file.

You also can use the Storage VIs on the Storage palette or the Write To 
Measurement File Express VI to write waveforms to files.



Chapter 11 File I/O

© National Instruments Corporation 11-9 LabVIEW Fundamentals

Reading Waveforms from Files
Use the Read Waveform from File VI to read waveforms from a file. After 
you read a single waveform, you can add or edit waveform data 
components with the Build Waveform function, or you can extract 
waveform attributes with the Get Waveform Attribute function.

The following VI reads a waveform from a file, edits the t0 component of 
the waveform, and plots the edited waveform to a graph.

The Read Waveform from File VI also reads multiple waveforms from a 
file. The VI returns an array of waveform data, which you can display in a 
multiplot graph. If you want to access a single waveform from a file, you 
must index the array of waveform data, as shown in the following block 
diagram. The VI accesses a file that includes multiple waveforms. The 
Index Array function reads the first and third waveforms in the file and 
plots them on two separate waveform graphs.

Refer to the Arrays section of Chapter 9, Grouping Data Using Strings, 
Arrays, and Clusters, for more information about indexing arrays. Refer to 
the Waveform Graphs section of Chapter 10, Graphs and Charts, for more 
information about waveform graphs.

You also can use the Storage VIs on the Storage palette or the Read From 
Measurement File Express VI to read waveforms from a file.



© National Instruments Corporation 12-1 LabVIEW Fundamentals

12
Documenting and Printing VIs

You can use LabVIEW to document and print VIs.

Document a VI to record information about the block diagram and/or the 
front panel at any stage of development.

Some options for printing VIs are more appropriate for printing 
information about VIs, and others are more appropriate for reporting the 
data and results the VIs generate. Several factors affect which printing 
method you use, including if you want to print manually or 
programmatically, how many options you need for the report format, if you 
need the functionality in the stand-alone applications you build, and on 
which platforms you run the VIs.

Documenting VIs
You can use LabVIEW to document a finished VI and create instructions 
for users of VIs. You can view documentation within LabVIEW, print it, 
and save it to HTML, RTF, or text files.

To create effective documentation for VIs, create VI and object 
descriptions.

Create descriptions for VIs and their objects, such as controls and 
indicators, to describe the purpose of the VI or object and to give users 
instructions for using the VI or object. You can view the descriptions in 
LabVIEW, print them, or save them to HTML, RTF, or text files.

Create, edit, and view VI descriptions by selecting File»VI Properties and 
selecting Documentation from the Category pull-down menu. Create, 
edit, and view object descriptions by right-clicking the object and selecting 
Description and Tip from the shortcut menu. Tip strips are brief 
descriptions that appear when you move the cursor over an object while a 
VI runs. If you do not enter a tip in the Description and Tip dialog box, no 
tip strip appears. The VI or object description appears in the Context Help 
window when you move the cursor over the VI icon or object, respectively.

Note You cannot enter a description for a VI or function located on the Functions palette.



Chapter 12 Documenting and Printing VIs

LabVIEW Fundamentals 12-2 ni.com

Printing VIs
You can use the following primary ways to print VIs:

• Select File»Print Window to print the contents of the active window.

• Select File»Print to print more comprehensive information about a VI, 
including information about the front panel, block diagram, subVIs, 
controls, VI history, and so on.

• Programmatically print a VI window or programmatically print or save 
a report that contains VI documentation or data the VI returns.

Select File»Print to print VI documentation or save it to HTML, RTF, or 
text files. You can select a built-in format or create a custom format for 
documentation. The documentation you create can include the following 
items:

• Icon and connector pane

• Front panel and block diagram

• Controls, indicators, and data type terminals

• Labels and captions for controls and indicators

• VI and object descriptions

• VI hierarchy

• List of subVIs

• Revision history

Note The documentation you create for certain types of VIs cannot include all the 
previous items. For example, a polymorphic VI does not have a front panel or a block 
diagram, so you cannot include those items in the documentation you create for a 
polymorphic VI.

You can use the HTML or RTF files LabVIEW generates to create your 
own compiled help files. (Windows) You can compile the individual HTML 
files LabVIEW generates into an HTML Help file. (Mac OS) You can use 
the individual HTML files LabVIEW generates in Apple Help.

You can compile the RTF files LabVIEW generates into a (Windows) 
WinHelp or (Linux) HyperHelp file.



© National Instruments Corporation A-1 LabVIEW Fundamentals

A
Technical Support and 
Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support 
include the following:

– Self-Help Resources—For answers and solutions, visit the 
award-winning National Instruments Web site for software drivers 
and updates, a searchable KnowledgeBase, product manuals, 
step-by-step troubleshooting wizards, thousands of example 
programs, tutorials, application notes, instrument drivers, and 
so on.

– Free Technical Support—All registered users receive free Basic 
Service, which includes access to hundreds of Application 
Engineers worldwide in the NI Developer Exchange at 
ni.com/exchange. National Instruments Application Engineers 
make sure every question receives an answer.

For information about other technical support options in your 
area, visit ni.com/services or contact your local office at 
ni.com/contact. 

• Training and Certification—Visit ni.com/training for 
self-paced training, eLearning virtual classrooms, interactive CDs, 
and Certification program information. You also can register for 
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, National Instruments 
Alliance Partner members can help. To learn more, call your local 
NI office or visit ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.



© National Instruments Corporation G-1 LabVIEW Fundamentals

Glossary

Symbol Prefix Value

y yocto 10–24

z zepto 10–21

a atto 10–18

f femto 10–15

p pico 10–12

n nano 10–9

µ micro 10–6

m milli 10–3

c centi 10–2

d deci 10–1

da deka 101

h hecto 102

k kilo 103

M mega 106

G giga 109

T tera 1012

P peta 1015

E exa 1018

Z zetta 1021

Y yotta 1024



Glossary

LabVIEW Fundamentals G-2 ni.com

Numbers/Symbols

∞ Infinity.

∆ Delta; difference. x denotes the value by which x changes from one index 
to the next.

π Pi.

1D One-dimensional.

2D Two-dimensional.

3D Three-dimensional.

A

A Amperes.

active window Window that is currently set to accept user input, usually the frontmost 
window. The title bar of an active window is highlighted. Make a window 
active by clicking it or by selecting it from the Windows menu.

application Application created using the LabVIEW Development System and 
executed in the LabVIEW Run-Time System environment.

application instance Instance of LabVIEW created for each target in a LabVIEW project. 
When you open a VI from the Project Explorer window, the VI opens in 
the application instance for the target. LabVIEW also creates a main 
application instance, which contains open VIs that are not part of a project 
and VIs that you did not open from a project. See also target.

array Ordered, indexed list of data elements of the same type.

array shell Front panel object that houses an array. An array shell consists of an index 
display, a data object window, and an optional label. It can accept various 
data types.

artificial data 
dependency

Condition in a dataflow programming language in which the arrival of 
data, rather than its value, triggers execution of a node.

ASCII American Standard Code for Information Interchange.



Glossary

© National Instruments Corporation G-3 LabVIEW Fundamentals

auto-indexing Capability of loop structures to disassemble and assemble arrays at their 
borders. As an array enters a loop with auto-indexing enabled, the loop 
automatically disassembles it extracting scalars from 1D arrays, 1D arrays 
extracted from 2D arrays, and so on. Loops assemble data values into 
arrays as data values exit the loop in the reverse order.

autoscaling Ability of scales to adjust to the range of plotted values. On graph scales, 
autoscaling determines maximum and minimum scale values.

B

block diagram Pictorial description or representation of a program or algorithm. The 
block diagram consists of executable icons called nodes and wires that 
carry data between the nodes. The block diagram is the source code for 
the VI. The block diagram resides in the block diagram window of the VI.

Boolean controls and 
indicators

Front panel objects to manipulate and display Boolean (TRUE or FALSE) 
data.

breakpoint Pause in execution used for debugging.

Breakpoint tool Tool to set a breakpoint on a VI, node, or wire.

broken Run button Button that replaces the Run button when a VI cannot run because of 
errors.

broken VI VI that cannot run because of errors; signified by a broken arrow in the 
broken Run button.

buffer Temporary storage for acquired or generated data.

Bundle function Function that creates clusters from various types of elements.

C

case One subdiagram of a Case structure.

Case structure Conditional branching control structure that executes one of its 
subdiagrams based on the input to the Case structure. It is the combination 
of the IF, THEN, ELSE, and CASE statements in control flow languages.



Glossary

LabVIEW Fundamentals G-4 ni.com

channel 1. Physical—a terminal or pin at which you can measure or generate an 
analog or digital signal. A single physical channel can include more than 
one terminal, as in the case of a differential analog input channel or a 
digital port of eight lines. A counter also can be a physical channel, 
although the counter name is not the name of the terminal where the 
counter measures or generates the digital signal.

2. Virtual—a collection of property settings that can include a name, a 
physical channel, input terminal connections, the type of measurement or 
generation, and scaling information. You can define NI-DAQmx virtual 
channels outside a task (global) or inside a task (local). Configuring 
virtual channels is optional in Traditional NI-DAQ (Legacy) and earlier 
versions, but is integral to every measurement you take in NI-DAQmx. In 
Traditional NI-DAQ (Legacy), you configure virtual channels in MAX. In 
NI-DAQmx, you can configure virtual channels either in MAX or in your 
program, and you can configure channels as part of a task or separately.

3. Switch—a switch channel represents any connection point on a switch. 
It can be made up of one or more signal wires (commonly one, two, or 
four), depending on the switch topology. A virtual channel cannot be 
created with a switch channel. Switch channels may be used only in the 
NI-DAQmx Switch functions and VIs.

chart 2D display of one or more plots in which the display retains a history of 
previous data, up to a maximum that you define. The chart receives the 
data and updates the display point by point or array by array, retaining a 
certain number of past points in a buffer for display purposes. See also 
scope chart, strip chart, and sweep chart.

checkbox Small square box in a dialog box you can select or clear. Checkboxes 
generally are associated with multiple options that you can set. You can 
select more than one checkbox.

class A category containing properties, methods, and events. Classes are 
arranged in a hierarchy with each class inheriting the properties and 
methods associated with the class in the preceding level.

cluster A set of ordered, unindexed data elements of any data type, including 
numeric, Boolean, string, array, or cluster. The elements must be all 
controls or all indicators.

cluster shell Front panel object that contains the elements of a cluster.

coercion Automatic conversion LabVIEW performs to change the numeric 
representation of a data element.



Glossary

© National Instruments Corporation G-5 LabVIEW Fundamentals

coercion dot Appears on a block diagram node to alert you that you have wired data of 
two different numeric data types together. Also appears when you wire 
any data type to a variant data type.

Coloring tool Tool to set foreground and background colors.

compile Process that converts high-level code to machine-executable code. 
LabVIEW compiles VIs automatically before they run for the first time 
after you create or edit alteration.

conditional terminal Terminal of a While Loop that contains a Boolean value that determines 
if the VI performs another iteration.

configuration utility Refers to Measurement & Automation Explorer on Windows and 
configuration utilities for the instrument on Mac OS and Linux.

connector Part of the VI or function node that contains input and output terminals. 
Data values pass to and from the node through a connector.

connector pane Region in the upper right corner of a front panel or block diagram window 
that displays the VI terminal pattern. It defines the inputs and outputs you 
can wire to a VI.

constant A terminal on the block diagram that supplies fixed data values to the 
block diagram. See also universal constant and user-defined constant.

Context Help window Window that displays basic information about LabVIEW objects when 
you move the cursor over each object. Objects with context help 
information include VIs, functions, constants, structures, palettes, 
properties, methods, events, dialog box components, and items in the 
Project Explorer window.

control Front panel object for entering data to a VI interactively or to a subVI 
programmatically, such as a knob, push button, or dial.

control flow Programming system in which the sequential order of instructions 
determines execution order. Most text-based programming languages are 
control flow languages.

Controls palette Palette that contains front panel controls, indicators, and decorative 
objects.

conversion Changing the type of a data element.



Glossary

LabVIEW Fundamentals G-6 ni.com

count terminal Terminal of a For Loop whose value determines the number of times the 
For Loop executes its subdiagram.

current VI VI whose front panel, block diagram, or Icon Editor is the active window.

D

DAQ See data acquisition (DAQ) and NI-DAQ.

DAQ Assistant A graphical interface for configuring measurement tasks, channels, and 
scales.

DAQ device A device that acquires or generates data and can contain multiple channels 
and conversion devices. DAQ devices include plug-in drivers, PCMCIA 
cards, and DAQPad devices, which connect to a computer USB or 1394 
(FireWire™) port. SCXI modules are considered DAQ devices.

data acquisition (DAQ) 1. Acquiring and measuring analog or digital electrical signals from 
sensors, acquisition transducers, and test probes or fixtures. 

2. Generating analog or digital electrical signals. 

data dependency Condition in a dataflow programming language in which a node cannot 
execute until it receives data from another node. See also artificial data 
dependency.

data flow Programming system that consists of executable nodes that execute only 
when they receive all required input data. The nodes produce output data 
automatically when they execute. LabVIEW is a dataflow system. The 
movement of data through the nodes determines the execution order of the 
VIs and functions on the block diagram.

data type Format for information. In LabVIEW, acceptable data types for most VIs 
and functions are numeric, array, string, Boolean, path, refnum, 
enumerated type, waveform, and cluster.

datalog To acquire data and simultaneously store it in a disk file. LabVIEW File 
I/O VIs and functions can log data.

datalog file File that stores data as a sequence of records of a single, arbitrary data type 
that you specify when you create the file. Although all the records in a 
datalog file must be a single type, that type can be complex. For example, 
you can specify that each record is a cluster that contains a string, a 
number, and an array.



Glossary

© National Instruments Corporation G-7 LabVIEW Fundamentals

default Preset value. Many VI inputs use a default value if you do not specify a 
value.

device An instrument or controller you can access as a single entity that controls 
or monitors real-world I/O points. A device often is connected to a host 
computer through some type of communication network. See also DAQ 
device and measurement device.

dialog box Window that appears when an application needs further information to 
carry out a command.

dimension Size and structure of an array.

directory Structure for organizing files into convenient groups. A directory is like 
an address that shows the location of files. A directory can contain files or 
subdirectories of files.

discrete Having discontinuous values of the independent variable, usually time.

drag To use the cursor on the screen to select, move, copy, or delete objects.

drive Letter in the range a-z followed by a colon (:), to indicate a logical disk 
drive.

driver Software that controls a specific hardware device, such as a DAQ device.

E

edit mode When you can make changes to a VI.

empty array Array that has zero elements but has a defined data type. For example, an 
array that has a numeric control in its data display window but has no 
defined values for any element is an empty numeric array.

error cluster Consists of a Boolean status indicator, a numeric code indicator, and a 
string source indicator.

error in Error cluster that enters a VI.

error message Indication of a software or hardware malfunction or of an unacceptable 
data entry attempt.

error out The error cluster that leaves a VI.



Glossary

LabVIEW Fundamentals G-8 ni.com

event Condition or state of an analog or digital signal.

execution highlighting Debugging technique that animates VI execution to illustrate the data flow 
in the VI.

Express VI A subVI designed to aid in common measurement tasks. You configure an 
Express VI using a configuration dialog box.

F

Flat Sequence structure Program control structure that executes its subdiagrams in numeric order. 
Use this structure to force nodes that are not data dependent to execute in 
the order you want if flow-through parameters are not available. The Flat 
Sequence structure displays all the frames at once and executes the frames 
from left to right until the last frame executes. 

For Loop Iterative loop structure that executes its subdiagram a set number of times. 
Equivalent to text-based code: For i  = 0 to n — 1, do...

frame Subdiagram of a Flat or Stacked Sequence structure.

free label Label on the front panel or block diagram that does not belong to any 
other object.

frequency f, the basic unit of rate, measured in events or oscillations per second 
using a frequency counter or spectrum analyzer. Frequency is the 
reciprocal of the period of a signal.

front panel Interactive user interface of a VI. Front panel appearance imitates 
physical instruments, such as oscilloscopes and multimeters.

function Built-in execution element, comparable to an operator, function, or 
statement in a text-based programming language.

Functions palette Palette that contains VIs, functions, block diagram structures, and 
constants.



Glossary

© National Instruments Corporation G-9 LabVIEW Fundamentals

G

G Graphical programming language LabVIEW uses.

General Purpose 
Interface Bus

GPIB. Synonymous with HP-IB. The standard bus used for controlling 
electronic instruments with a computer. Also called IEEE 488 bus 
because it is defined by ANSI/IEEE Standards 488-1978, 488.1-1987, 
and 488.2-1992.

glyph Small picture or icon.

GPIB See General Purpose Interface Bus.

graph 2D display of one or more plots. A graph receives and plots data as a 
block.

graph control Front panel object that displays data in a Cartesian plane.

H

handle Pointer to a pointer to a block of memory that manages reference arrays 
and strings. An array of strings is a handle to a block of memory that 
contains handles to strings.

hex Hexadecimal. Base-16 number system.

Hierarchy window See VI Hierarchy window.

I

I/O Input/Output. The transfer of data to or from a computer system involving 
communications channels, operator input devices, and/or data acquisition 
and control interfaces.

icon Graphical representation of a node on a block diagram.

indicator Front panel object that displays output, such as a graph or LED.

Inf Digital display value for a floating-point representation of infinity.

instrument driver A set of high-level functions that control and communicate with 
instrument hardware in a system.



Glossary

LabVIEW Fundamentals G-10 ni.com

integer Any of the natural numbers, their negatives, or zero.

intensity map/plot Method of displaying three dimensions of data in a 2D plot with the use 
of color.

iteration terminal Terminal of a For Loop or While Loop that contains the current number 
of completed iterations.

IVI Interchangeable Virtual Instruments. A software standard for creating a 
common interface (API) to common test and measurement instruments.

L

label Text object used to name or describe objects or regions on the front panel 
or block diagram.

Labeling tool Tool to create labels and enter text into text windows.

LabVIEW Laboratory Virtual Instrument Engineering Workbench. LabVIEW is a 
graphical programming language that uses icons instead of lines of text to 
create programs.

LED Light-emitting diode.

legend Object a graph or chart owns to display the names and plot styles of plots 
on that graph or chart.

library See LLB or project library.

listbox Box within a dialog box that lists all available choices for a command. For 
example, a list of filenames on a disk.

LLB LabVIEW file that contains a collection of related VIs for a specific use.

M

marquee Moving, dashed border that surrounds selected objects.

matrix A rectangular array of numbers or mathematical elements that represent 
the coefficients in a system of linear equations.

MAX See Measurement & Automation Explorer.



Glossary

© National Instruments Corporation G-11 LabVIEW Fundamentals

Measurement & 
Automation Explorer

The standard National Instruments hardware configuration and diagnostic 
environment for Windows.

measurement device A DAQ device such as the E Series multifunction I/O (MIO) device, the 
SCXI signal conditioning module, and the switch module.

menu bar Horizontal bar that lists the names of the main menus of an application. 
The menu bar appears below the title bar of a window. Each application 
has a menu bar that is distinct for that application, although some menus 
and commands are common to many applications.

method A procedure that is executed when an object receives a message. A 
method is always associated with a class.

N

NaN Digital display value for a floating-point representation of <Not A 
Number>. Typically the result of an undefined operation, such as log(–1).

NI-DAQ Driver software included with all NI DAQ devices and signal conditioning 
components. NI-DAQ is an extensive library of VIs and functions you can 
call from an application development environment (ADE), such as 
LabVIEW, to program an NI measurement device, such as the M Series 
multifunction I/O (MIO) DAQ devices, signal conditioning modules, and 
switch modules.

NI-DAQmx The latest NI-DAQ driver with new VIs, functions, and development tools 
for controlling measurement devices. The advantages of NI-DAQmx over 
earlier versions of NI-DAQ include the DAQ Assistant for configuring 
channels and measurement tasks for a device for use in LabVIEW, 
LabWindows™/CVI™, and Measurement Studio; increased performance 
such as faster single-point analog I/O; NI-DAQmx simulation for most 
supported devices for testing and modifying applications without 
plugging in hardware; and a simpler, more intuitive API for creating DAQ 
applications using fewer functions and VIs than earlier versions of 
NI-DAQ.

node Program execution element. Nodes are analogous to statements, 
operators, functions, and subroutines in text-based programming 
languages. On a block diagram, nodes include functions, structures, and 
subVIs.



Glossary

LabVIEW Fundamentals G-12 ni.com

non-displayable 
characters

ASCII characters that cannot be displayed, such as null, backspace, tab, 
and so on.

numeric controls and 
indicators

Front panel objects to manipulate and display numeric data.

O

object Generic term for any item on the front panel or block diagram, including 
controls, indicators, nodes, wires, and imported pictures.

one-dimensional Having one dimension, as in the case of an array that has only one row of 
elements.

Operating tool Tool to enter data into controls or to operate them.

operator Person who initiates and monitors the operation of a process.

P

palette Displays objects or tools you can use to build the front panel or block 
diagram.

picture Series of graphics instructions that a picture indicator uses to create a 
picture.

pixel Smallest unit of a digitized picture.

plot Graphical representation of an array of data shown either on a graph or a 
chart.

point Cluster that contains two 16-bit integers that represent horizontal and 
vertical coordinates.

polymorphism Ability of a node to automatically adjust to data of different 
representation, type, or structure.

Positioning tool Tool to move and resize objects.

probe Debugging feature for checking intermediate values in a VI.

Probe tool Tool to create probes on wires.



Glossary

© National Instruments Corporation G-13 LabVIEW Fundamentals

project A collection of LabVIEW files and non-LabVIEW files that you can use 
to create build specifications and deploy or download files to targets.

Project Explorer 
window

Window in which you can create and edit LabVIEW projects.

project library A collection of VIs, type definitions, shared variables, palette menu files, 
and other files, including other project libraries.

prototype Simple, quick implementation of a particular task to demonstrate that the 
design has the potential to work. The prototype usually has missing 
features and might have design flaws. In general, prototypes should be 
thrown away, and the feature should be reimplemented for the final 
version.

pull-down menus Menus accessed from a menu bar. Pull-down menu items are usually 
general in nature.

pulse A signal whose amplitude deviates from zero for a short period of time.

PXI PCI eXtensions for Instrumentation. A modular, computer-based 
instrumentation platform.

R

range Region between the limits within which a quantity is measured, received, 
or transmitted. Expressed by stating the lower and upper range values.

rectangle Cluster that contains four 16-bit integers. The first two values describe the 
vertical and horizontal coordinates of the top left corner. The last two 
values describe the vertical and horizontal coordinates of the bottom right 
corner.

refnum Reference number. An identifier that LabVIEW uses as reference to an 
object such as a VI, application, or an ActiveX or .NET object. Use a 
refnum as an input parameter for a function or VI to perform an operation 
on the object.

representation Subtype of the numeric data type, of which there are 8-, 16-, and 32-bit 
signed and unsigned integers, as well as single-, double-, and 
extended-precision, floating-point numbers.

resizing circles 
or handles

Circles or handles that appear on the borders of an object to indicate the 
points where you can resize the object.



Glossary

LabVIEW Fundamentals G-14 ni.com

ring control Special numeric control that associates 32-bit integers, starting at 0 and 
increasing sequentially, with a series of text labels or graphics.

run mode When a VI is running or reserved to run. A VI enters run mode when you 
click the Run or Run Continuously buttons on the front panel toolbar, 
the single-stepping buttons on the block diagram toolbar, or select 
Operate»Change to Run Mode. In run mode, all front panel objects have 
an abridged set of shortcut menu items. You cannot edit a VI while the 
VI runs.

S

sample Single analog or digital input or output data point.

scalar Number that a point on a scale can represent. A single value as opposed 
to an array. Scalar Boolean values and clusters are explicitly singular 
instances of their respective data types.

scale Part of graph, chart, and some numeric controls and indicators that 
contains a series of marks or points at known intervals to denote units of 
measure.

scope chart Numeric indicator modeled on the operation of an oscilloscope.

sequence structure See Flat Sequence structure or Stacked Sequence structure.

shift register Optional mechanism in loop structures to pass the value of a variable from 
one iteration of a loop to a subsequent iteration. Shift registers are similar 
to static variables in text-based programming languages.

shortcut menu Menu accessed by right-clicking an object. Menu items pertain to that 
object specifically.

slider Moveable part of slide controls and indicators.

source control A solution to the problem of sharing VIs and controlling access to avoid 
accidental loss of data. You can use a source control provider to share files 
among multiple users, improve security and quality, and track changes to 
shared projects. Also called source code control.



Glossary

© National Instruments Corporation G-15 LabVIEW Fundamentals

Stacked Sequence 
structure

Program control structure that executes its subdiagrams in numeric order. 
Use this structure to force nodes that are not data dependent to execute in 
the order you want if flow-through parameters are not available. The 
Stacked Sequence structure displays each frame so you see only one 
frame at a time and executes the frames in order until the last frame 
executes.

string Representation of a value as text.

string controls and 
indicators

Front panel objects to manipulate and display text.

strip chart Numeric plotting indicator modeled after a paper strip chart recorder, 
which scrolls as it plots data.

structure Program control element, such as a Flat Sequence structure, Stacked 
Sequence structure, Case structure, For Loop, or While Loop.

subdiagram Block diagram within the border of a structure.

subVI VI used on the block diagram of another VI. Comparable to a subroutine.

sweep chart Numeric indicator modeled on the operation of an oscilloscope. It is 
similar to a scope chart, except that a line sweeps across the display to 
separate old data from new data.

syntax Set of rules to which statements must conform in a particular 
programming language.

T

target A device or machine on which a VI runs. You must use a LabVIEW 
project to work with an RT, FPGA, or PDA target.

terminal Object or region on a node through which data values pass.

tip strip Small yellow text banners that identify the terminal name and make it 
easier to identify terminals for wiring.

tool Special cursor to perform specific operations.

toolbar Bar that contains command buttons to run and debug VIs.



Glossary

LabVIEW Fundamentals G-16 ni.com

Tools palette Palette that contains tools you can use to edit and debug front panel and 
block diagram objects.

top-level VI VI at the top of the VI hierarchy. This term distinguishes the VI from its 
subVIs.

trigger Any event that causes or starts some form of data capture.

tunnel Data entry or exit terminal on a structure.

two-dimensional Having two dimensions, as in the case of an array that has several rows 
and columns.

U

universal constant Block diagram object you cannot edit that emits a particular ASCII 
character or standard numeric constant, for example, π.

user See operator.

user-defined constant Block diagram object that emits a value you set.

V

VI See virtual instrument (VI).

VI Hierarchy window Window that graphically displays the hierarchy of VIs and subVIs.

virtual instrument (VI) Program in LabVIEW that models the appearance and function of a 
physical instrument.

Virtual Instrument 
Software Architecture

VISA. Single interface library for controlling GPIB, VXI, RS-232, and 
other types of instruments.

VISA See Virtual Instrument Software Architecture.

W

waveform Multiple voltage readings taken at a specific sampling rate.

waveform chart Indicator that plots data points at a certain rate.



Glossary

© National Instruments Corporation G-17 LabVIEW Fundamentals

While Loop Loop structure that repeats a section of code until a condition occurs.

wire Data path between nodes.

wire branch Section of wire that contains all the wire segments from junction to 
junction, terminal to junction, or terminal to terminal if there are no 
junctions between.

wire segment Single horizontal or vertical piece of wire.

wire stubs Truncated wires that appear next to unwired terminals when you move the 
Wiring tool over a VI or function node.

Wiring tool Tool to define data paths between terminals.

wizard A dialog box with a sequence of pages through which you can move 
forward and backward as you fill in information.



© National Instruments Corporation I-1 LabVIEW Fundamentals

Index

Numerics
3D graphs, 10-10

A
abridged menus, 3-4
adding

space to front panel, 4-15
terminals to functions, 5-5

additional documentation, 1-1
See also related documentation

aligning objects, 4-14
annotations

See also labeling
using, 10-17

Application Builder
readme, 1-3

application font, 4-16
arrays

auto-indexing loops, 8-5
building with loops, 8-7
controls and indicators, 4-7
creating constants, 9-7
creating controls and indicators, 9-7
default data, 9-10
dimensions, 9-4
examples of 1D arrays, 9-5
examples of 2D arrays, 9-6
indexes in multidimensional arrays, 9-4
indexes on multidimensional arrays, 9-7
restrictions, 9-4
size of, 9-10

artificial data dependency, 5-11
auto-indexing

default data, 8-11
For Loops, 8-6
While Loops, 8-6

automatic wiring, 5-8

B
binary

creating files, 11-7
block diagram, 2-2

adding terminals to functions, 5-5
coercion dots, 5-9
constants, 5-3
data flow, 5-9
data types, 5-2
designing, 5-13
displaying terminals, 5-1
fonts, 4-16
functions, 5-4
labels, 4-16
nodes, 5-3
objects, 5-1
options, 3-7
removing terminals from functions, 5-5
structures, 8-1
terminals for controls and indicators, 5-1
wiring automatically, 5-8
wiring manually, 5-6

Boolean controls and indicators, 4-5
Breakpoint tool

debugging VIs, 6-4
broken VIs

common causes, 6-3
correcting, 6-2
displaying errors, 6-2

broken wires, 5-8
building

block diagram, 5-1
front panel, 4-1



Index

LabVIEW Fundamentals I-2 ni.com

polymorphic VIs, 7-6
subVIs, 7-1

buttons
front panel, 4-5

C
Case structures

data types, 8-12
error handling, 6-7
executing, 8-11
selector terminals, 8-12
specifying a default case, 8-12

certification (NI resources), A-1
characters

formatting, 4-16
charts, 10-1

customizing appearance, 10-15
customizing behavior, 10-18
graph palette, 10-14
history length, 10-19
intensity, 10-4
multiple scales, 10-13
options, 10-13
overlaid plots, 10-20
scale formatting, 10-13
scrolling, 10-15
stacked plots, 10-20
types, 10-1
update mode, 10-19
waveform, 10-3

classic controls and indicators, 4-2
clusters

constants, 9-11
controls and indicators, 4-7
creating, 9-11
error, 6-6
order of elements, 9-11
wire patterns, 9-10

coercion dots, 5-9

color
high-color controls and indicators, 4-2
low-color controls and indicators, 4-2
mapping, 10-7
options, 3-7

coloring
front panel objects, 4-14

combo boxes, 4-6
communication

file I/O, 11-1
computer-based instruments

configuring, 1-4
conditional terminals, 8-3
configuring

front panel controls, 4-12
front panel indicators, 4-12
front panels, 4-13
VI appearance and behavior, 7-7

connecting terminals, 5-6
connector panes, 2-5

building, 7-3
printing, 12-2

constants, 5-3
arrays, 9-7
clusters, 9-11

containers, 4-9
subpanel controls, 4-9
tab controls, 4-9

Context Help window, 3-5
creating object descriptions, 12-1
creating VI descriptions, 12-1

continuously running VIs, 6-1
control flow programming model, 5-10
controls, 4-1

array, 4-7
Boolean, 4-5
changing to indicators, 4-13
classic, 4-2
cluster, 4-7
coloring, 4-14



Index

© National Instruments Corporation I-3 LabVIEW Fundamentals

data type terminals, 5-1
data types, 5-2
dialog, 4-2
displaying optional elements, 4-13
enumerated type, 4-8
grouping, 4-14
guidelines for using on front panel, 4-17
hiding, 4-13
high-color, 4-2
I/O name, 4-10
icons, 5-1
listbox, 4-7
locking, 4-14
low-color, 4-2
matrix, 4-7
modern, 4-2
navigating, 3-2
numeric, 4-3
on block diagram, 5-1
optional elements, 4-13
palette, 3-1
path, 4-7
printing, 12-2
refnum, 4-11
replacing, 4-13
resizing, 4-15
ring, 4-8
rotary, 4-4
scroll bar, 4-4
searching, 3-2
slide, 4-3
string, 4-6
string display types, 9-2
tab, 4-9
table, strings in, 9-2
terminals, 5-1
time stamp, 4-4
user interface design, 4-17

Controls palette, 3-1
navigating, 3-2
searching, 3-2

correcting
broken VIs, 6-2
broken wires, 5-8
VIs with unexpected data, 6-3

count terminals, 8-2
auto-indexing to set, 8-6

creating
arrays, 9-7
binary files, 11-7
clusters, 9-11
datalog files, 11-8
icons, 7-2
object descriptions, 12-1
spreadsheet files, 11-6
subVIs, 7-1
subVIs from sections of a VI, 7-4
text files, 11-6
tip strips, 12-1
user-defined constants, 5-3
VI descriptions, 12-1

cursors
graph, 10-16

customizing
palettes, 3-7
VI appearance and behavior, 7-7
work environment, 3-7

D
DAQ

passing channel names, 4-10
data dependency, 5-10

artificial, 5-11
missing, 5-11

data flow. See dataflow
data types, 5-2

case selector values, 8-12
control and indicator, 5-2



Index

LabVIEW Fundamentals I-4 ni.com

default values, 5-2
printing, 12-2
waveform, 10-3

dataflow
observing, 6-3

dataflow programming model, 5-9
managing memory, 5-12

datalog files
creating, 11-8
reading from, 11-8

debugging
automatic error handling, 6-5
broken VIs, 6-2
error handling, 6-5
loops, 8-11
options, 3-7
single-stepping, 6-4
techniques, 6-3
undefined data, 5-3
using execution highlighting, 6-3
using the Breakpoint tool, 6-4

default cases, 8-12
default data

arrays, 9-10
loops, 8-11

default values
data types, 5-2

deleting
broken wires, 5-8

designing
block diagram, 5-13
dialog boxes, 4-17
front panel, 4-17
user interfaces, 4-17

diagnostic tools (NI resources), A-1
dialog boxes

controls, 4-2
designing, 4-17
font, 4-16
indicators, 4-2

labels, 4-2
ring controls, 4-8

dials
See also numeric
front panel, 4-4

digital data
digital waveform data type, 10-10

digital graphs, 10-7
digital waveform data type, 10-10
digital waveform graph

displaying digital data in, 10-7
dimensions

arrays, 9-4
disk space

options, 3-7
disk streaming, 11-5
displaying

errors, 6-2
optional elements in front panel 

objects, 4-13
terminals, 5-1
warnings, 6-2

distributing
objects on the front panel, 4-14

documentation, 1-1
See also related documentation
guide, 1-1
NI resources, A-1
using with other resources, 1-1

documenting VIs
creating object descriptions, 12-1
creating tip strips, 12-1
creating VI descriptions, 12-1
help files, 12-2
printing, 12-2

dots
coercion, 5-9

drivers (NI resources), A-1



Index

© National Instruments Corporation I-5 LabVIEW Fundamentals

E
enumerated type controls, 4-8
errors

automatically handling, 6-5
broken VIs, 6-2
checking for, 6-5
clusters, 6-6
codes, 6-6
debugging techniques, 6-3
displaying, 6-2
finding, 6-2
handling, 6-5
handling automatically, 6-5
handling using Case structures, 6-7
handling using While Loops, 6-7
I/O, 6-6
list, 6-2
methods to handle, 6-6
window, 6-2

examples, 1-4
NI resources, A-1

execution
debugging VIs, 6-3
flow, 5-9
highlighting, 6-3

Express VIs and functions
overview, 5-5

F
Feedback Node

initializing, 8-10
replacing with shift registers, 8-11
selecting, 8-10

file I/O, 11-1
advanced file functions, 11-3
basic operation, 11-1
creating binary files, 11-7
creating datalog files, 11-8
creating spreadsheet files, 11-6

creating text files, 11-6
disk streaming, 11-5
formats, 11-2
functions for common operations, 11-3
paths, 11-4
reading datalog files, 11-8
reading waveforms, 11-9
refnums, 11-1
spreadsheet files, 11-6
using Storage VIs, 11-5
VIs for common operations, 11-3
writing waveforms, 11-8

finding
controls, VIs, and functions on the 

palettes, 3-2
errors, 6-2

fixing
VIs, 6-2

Flat Sequence structures
executing, 8-14

floating-point numbers
overflow and underflow, 5-3

flow of execution, 5-9
fonts

application, 4-16
dialog, 4-16
options, 3-7
settings, 4-16
system, 4-16

For Loops
auto-indexing, 8-6
controlling timing, 8-5
count terminals, 8-2
default data, 8-11
executing, 8-2
iteration terminals, 8-2
shift registers, 8-7

format string parameters, 9-4
formats for file I/O, 11-2



Index

LabVIEW Fundamentals I-6 ni.com

formatting
specifiers in strings, 9-4
strings, 9-3
text on front panel, 4-16

free labels, 4-16
front panel, 2-2

adding space without resizing, 4-15
aligning objects, 4-14
changing controls to indicators, 4-13
changing indicators to controls, 4-13
coloring objects, 4-14
controls, 4-1
designing, 4-17
displaying optional object elements, 4-13
distributing objects, 4-14
fonts, 4-16
grouping objects, 4-14
hiding optional elements, 4-13
indicators, 4-1
labels, 4-16
loading in subpanel controls, 4-9
locking objects, 4-14
options, 3-7
overlapping objects, 4-9
replacing objects, 4-13
resizing objects, 4-15
spacing objects evenly, 4-14
terminals, 5-1
text characteristics, 4-16

full menus, 3-4
functions, 5-4

adding terminals, 5-5
navigating, 3-2
removing terminals, 5-5
searching, 3-2

Functions palette, 3-2
customizing, 3-7
navigating, 3-2
searching, 3-2

G
gauges

See also numeric
front panel, 4-4

getting started, 1-2
GPIB

configuring, 1-4
graph palette, 10-14
graphs, 10-1

3D, 10-10
annotating data points, 10-17
cursors, 10-16
customizing 3D, 10-18
customizing appearance, 10-15
customizing behavior, 10-15
intensity, 10-4
multiple scales, 10-13
options, 10-13
palette, 10-14
scale formatting, 10-13
scaling, 10-13
scrolling, 10-15
types, 10-1
waveform, 10-2
XY, 10-3

gray dots on block diagram, 5-9
grid, 4-14

options, 3-7
grouping

data in arrays, 9-4
data in clusters, 9-10
data in strings, 9-1
front panel objects, 4-14

H
hardware

configuring, 1-4
help

See also Context Help window



Index

© National Instruments Corporation I-7 LabVIEW Fundamentals

technical support, A-1
help files

creating, 12-2
HTML, 12-2
RTF, 12-2

help system
related documentation, 1-1

hiding
menu bars, 4-17
optional elements in front panel 

objects, 4-13
scroll bars, 4-17

hierarchy of VIs
printing, 12-2
viewing, 7-4

highlighting execution
debugging VIs, 6-3

history
charts, 10-19
options, 3-7

horizontal scroll bar, 4-4
HTML

help files, 12-2

I
I/O

See also file I/O
error, 6-6
name controls and indicators, 4-10

icons, 2-5
creating, 7-2
editing, 7-2
printing, 12-2

incrementally running VIs, 6-4
indexes

using on arrays, 9-4
indexing loops, 8-5

For Loops, 8-6
While Loops, 8-6

indicators, 4-1
array, 4-7
Boolean, 4-5
changing to controls, 4-13
classic, 4-2
cluster, 4-7
coloring, 4-14
data type terminals, 5-1
data types, 5-2
dialog, 4-2
displaying optional elements, 4-13
grouping, 4-14
guidelines for using on front panel, 4-17
hiding, 4-13
high-color, 4-2
I/O name, 4-10
icons, 5-1
locking, 4-14
low-color, 4-2
matrix, 4-7
modern, 4-2
numeric, 4-3
on block diagram, 5-1
optional elements, 4-13
path, 4-7
printing, 12-2
replacing, 4-13
resizing, 4-15
rotary, 4-4
scroll bar, 4-4
slide, 4-3
string, 4-6
string display types, 9-2
tab, 4-9
terminals, 5-1
time stamp, 4-4
user interface design, 4-17

infinite While Loops, 8-5
infinity floating-point value, 5-3



Index

LabVIEW Fundamentals I-8 ni.com

installing
LabVIEW, 1-2

instances of polymorphic VIs
See also polymorphic VIs
selecting manually, 7-5

instrument drivers (NI resources), A-1
instruments

configuring, 1-4
integers

overflow and underflow, 5-3
intensity charts, 10-4

color mapping, 10-7
options, 10-5

intensity graphs, 10-4
color mapping, 10-7
options, 10-6

introduction to LabVIEW, 1-1
iteration terminals

For Loops, 8-2
While Loops, 8-4

IVI
passing logical names, 4-10

K
knobs

See also numeric
front panel, 4-4

KnowledgeBase, A-1
known issues, 1-3

L
labeling

constants, 5-3
fonts, 4-16

labels
dialog box, 4-2

LabVIEW
customizing, 3-7
installing, 1-2

introduction, 1-1
options, 3-7
uninstalling, 1-2

launching
LabVIEW, 3-1

lights on front panel, 4-5
listboxes, 4-7

controls, 4-7
locking

front panel objects, 4-14
loops

auto-indexing, 8-5
building arrays, 8-7
controlling timing, 8-5
default data, 8-11
For (overview), 8-2
infinite, 8-5
shift registers, 8-7
While (overview), 8-3

M
mapping colors for intensity graphs and 

charts, 10-7
matrices

controls and indicators, 4-7
Measurement & Automation Explorer, 1-4
memory

coercion dots, 5-9
managing with dataflow programming 

model, 5-12
menu bars

hiding, 4-17
menus, 3-4

abridged, 3-4
combo boxes, 4-6
ring controls, 4-8
shortcut, 3-4

meters
See also numeric
front panel, 4-4



Index

© National Instruments Corporation I-9 LabVIEW Fundamentals

most recently used menu items, 3-4
MRU menu items, 3-4

N
naming

VIs, 7-6
National Instruments support and 

services, A-1
navigating

Controls and Functions palette, 3-2
Navigation window

features, 3-6
needles

accessing from the shortcut menu, 4-4
NI support and services, A-1
nodes, 2-4

block diagram, 5-3
execution flow, 5-10

not a number floating-point value, 5-3
numbers

overflow and underflow, 5-3
numeric

controls and indicators, 4-3
formatting, 4-3
symbolic values, 5-3

O
objects

aligning, 4-14
block diagram, 5-1
changing controls to and from 

indicators, 4-13
coloring on front panel, 4-14
creating descriptions, 12-1
creating tip strips, 12-1
displaying optional elements, 4-13
distributing, 4-14
front panel and block diagram 

terminals, 5-1

grouping on the front panel, 4-14
hiding on front panel, 4-13
labeling, 4-16
locking on the front panel, 4-14
optional elements, 4-13
overlapping on front panel, 4-9
printing descriptions, 12-2
replacing on front panel, 4-13
resizing on front panel, 4-15
spacing evenly, 4-14
wiring automatically on block 

diagram, 5-8
wiring manually on block diagram, 5-6

options
setting, 3-7

order of cluster elements, 9-11
order of execution, 5-9
overflow in numbers, 5-3
overlaid plots, 10-20
overlapping front panel objects, 4-9
owned labels, 4-16

P
palettes

Controls, 3-1
customizing, 3-7
customizing Controls, 3-7
customizing Functions, 3-7
Functions, 3-2
navigating, 3-2
options, 3-7
Tools, 3-3

parameter lists. See connector panes
parameters

data types, 5-2
flow-through, 5-12

paths
controls and indicators, 4-7
file I/O, 11-4
options, 3-7



Index

LabVIEW Fundamentals I-10 ni.com

patterns
terminal, 7-3

performance
options, 3-7

pictures
ring controls, 4-8

plots
overlaid, 10-20
stacked, 10-20

polymorphic
building VIs, 7-6
VIs, 7-5

pop-up menus. See shortcut menus
preferences. See options
previous versions

saving VIs, 7-7
printing

documentation of VIs, 12-2
options, 3-7

programming examples, 1-4
NI resources, A-1

pull-down menus on front panel, 4-8

Q
quick reference card, 1-2

R
radio buttons controls, 4-5
reading

files, 11-1
refnums

controls, 4-11
file I/O, 11-1

related documentation, 1-1
See also documentation

release notes, 1-2
removing

broken wires, 5-8
terminals from functions, 5-5

repeating
blocks of code, 8-1

Repeat-Until Loops. See While Loops
replacing

front panel objects, 4-13
resizing

front panel objects, 4-15
revision history

printing, 12-2
ring controls, 4-8
rotary controls and indicators, 4-4
running VIs, 6-1
run-time

shortcut menus, 3-4

S
saving VIs

for previous versions, 7-7
scaling

graphs, 10-13
scope chart, 10-19
scroll bar controls, 4-4
scroll bars

hiding, 4-17
listboxes, 4-7

scrolling
charts, 10-15
graphs, 10-15

searching
for controls, VIs, and functions on the 

palettes, 3-2
selecting

wires, 5-8
selector terminal values, 8-12
sequence structures

comparing Flat to Stacked, 8-13
controlling execution order, 5-11
overusing, 8-14

setting
work environment options, 3-7



Index

© National Instruments Corporation I-11 LabVIEW Fundamentals

shift registers, 8-7
shortcut menus, 3-4

in run mode, 3-4
shortened menus, 3-4
simple menus, 3-4
single-stepping

debugging VIs, 6-4
sink terminals. See indicators
sizing. See resizing
slide controls and indicators, 4-3

See also numeric
sliders

adding, 4-3
snap-to grid, 4-14
software (NI resources), A-1
source code. See block diagram
source terminals. See controls
space

adding to front panel or block 
diagram, 4-15

spacing objects evenly, 4-14
speed of execution

controlling, 8-5
spreadsheet files

creating, 11-6
stacked plots, 10-20
Stacked Sequence structures

executing, 8-14
statements. See nodes
stepping through VIs

debugging VIs, 6-4
strings, 9-1

combo boxes, 4-6
controls, 4-6
display types, 9-2
editing programmatically, 9-3
formatting, 9-3
formatting specifiers, 9-4
indicators, 4-6
tables, 9-2

strip chart, 10-19

structures, 8-1
Case, 8-11
Event, 8-15
Flat Sequence, 8-14
For Loops, 8-2
on block diagram, 2-5
Stacked Sequence, 8-14
While Loops, 8-3

subpanel controls, 4-9
subroutines. See subVIs
subVIs, 7-1

building, 7-1
creating, 7-1
creating from sections of a VI, 7-4
hierarchy, 7-4
polymorphic VIs, 7-5

support
technical, A-1

sweep chart, 10-19
switches

front panel, 4-5
symbolic numeric values, 5-3
system

controls and indicators, 4-2
system font, 4-16

T
tab controls, 4-9
tables, 4-8
tanks

See also numeric
slide controls and indicators, 4-3

technical support, A-1
templates

VIs, 7-1
terminals, 2-3

adding to functions, 5-5
auto-indexing to set count, 8-6
block diagram, 5-1
coercion dots, 5-9



Index

LabVIEW Fundamentals I-12 ni.com

conditional, 8-3
constants, 5-3
control and indicator, 5-1
count, 8-2
displaying, 5-1
iteration on For Loops, 8-2
iteration on While Loops, 8-4
patterns, 7-3
printing, 12-2
removing from functions, 5-5
selector, 8-12
wiring, 5-6

text
entry boxes, 4-6
formatting, 4-16
ring controls, 4-8

text files
binary format, 11-7
creating, 11-6
creating for multiple platforms, 11-7

thermometers
See also numeric
slide controls and indicators, 4-3

time stamp
See also numeric
controls and indicators, 4-4

timing
controlling, 8-5

tip strips
creating, 12-1

toolbars, 3-5
project, 3-5

tools
getting started, 1-4
palette, 3-3

training (NI resources), A-1
tree controls, 4-7
troubleshooting

See also debugging
NI resources, A-1

tunnels, 8-1
input and output, 8-13

type controls
enumerated, 4-8

U
undefined data, 5-3

arrays, 9-10
infinity, 5-3
not a number, 5-3

underflow in numbers, 5-3
unexpected data, 5-3
ungrouping

front panel objects, 4-14
uninstalling LabVIEW, 1-2
unlocking

front panel objects, 4-14
upgrade notes, 1-2
upgrading VIs, 7-7
user interface. See front panel
user manual, 1-2

V
versions

saving VIs for previous, 7-7
vertical scroll bar, 4-4
VI Hierarchy window

displaying, 7-4
printing, 12-2

VIs, 2-1
broken, 6-2
configuring appearance and behavior, 7-7
correcting, 6-2
creating descriptions, 12-1
debugging techniques, 6-3
documenting, 12-1
error handling, 6-5
examples, 1-4
hierarchy, 7-4



Index

© National Instruments Corporation I-13 LabVIEW Fundamentals

naming, 7-6
polymorphic, 7-5
printing, 12-2
running, 6-1
templates, 7-1
upgrading, 7-7

VISA
passing resource names, 4-10

W
warnings

displaying, 6-2
waveform

charts, 10-3
data type, 10-3
graphs, 10-2
reading from files, 11-9
writing to files, 11-8

Web resources, A-1
While Loops

auto-indexing, 8-6
conditional terminals, 8-3
controlling timing, 8-5
default data, 8-11
error handling, 6-7
executing, 8-3
infinite, 8-5
iteration terminals, 8-4
shift registers, 8-7

wires, 2-4
broken, 5-8
selecting, 5-8

wiring
automatically, 5-8
manually, 5-7
objects, 5-7

wizards, 1-4
work environment options

setting, 3-7
writing

files, 11-1

X
x-scales

multiple, 10-13
XY graphs, 10-3

Y
y-scales

multiple, 10-13


	LabVIEW Fundamentals
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions

	Chapter 1 Introduction to LabVIEW
	LabVIEW Documentation Resources
	LabVIEW Help
	Print Documents
	Readme Documents

	LabVIEW VI Templates, Example VIs, and Tools
	LabVIEW VI Templates
	LabVIEW Example VIs
	LabVIEW Tools for DAQ Configuration (Windows)


	Chapter 2 Introduction to Virtual Instruments
	Front Panel
	Block Diagram
	Terminals
	Nodes
	Wires
	Structures

	Icon and Connector Pane
	Using and Customizing VIs and SubVIs

	Chapter 3 LabVIEW Environment
	Getting Started Window
	Controls Palette
	Functions Palette
	Navigating the Controls and Functions Palettes
	Tools Palette
	Menus and Toolbars
	Menus
	Shortcut Menus

	VI Toolbar
	Project Explorer Window Toolbars

	Context Help Window
	Project Explorer Window
	Navigation Window
	Customizing Your Work Environment
	Customizing the Controls and Functions Palettes
	Setting Work Environment Options


	Chapter 4 Building the Front Panel
	Front Panel Controls and Indicators
	Styles of Controls and Indicators
	Modern and Classic Controls and Indicators
	System Controls and Indicators

	Numeric Displays, Slides, Scroll Bars, Knobs, Dials, and Time Stamps
	Numeric Controls and Indicators
	Slide Controls and Indicators
	Scroll Bar Controls and Indicators
	Rotary Controls and Indicators
	Time Stamp Control and Indicator

	Graphs and Charts
	Buttons, Switches, and Lights
	Radio Buttons Controls

	Text Entry Boxes, Labels, and Path Displays
	String Controls and Indicators
	Combo Box Controls
	Path Controls and Indicators

	Array, Matrix, and Cluster Controls and Indicators
	Listboxes, Tree Controls, and Tables
	Listboxes
	Tree Controls
	Tables

	Ring and Enumerated Type Controls and Indicators
	Ring Controls
	Enumerated Type Controls

	Container Controls
	Tab Controls
	Subpanel Controls

	I/O Name Controls and Indicators
	Waveform Control
	Digital Waveform Control
	Digital Data Control

	References to Objects or Applications
	.NET and ActiveX Controls (Windows)

	Configuring Front Panel Objects
	Showing and Hiding Optional Elements
	Changing Controls to Indicators and Indicators to Controls
	Replacing Front Panel Objects

	Configuring the Front Panel
	Coloring Objects
	Aligning and Distributing Objects
	Grouping and Locking Objects
	Resizing Objects
	Adding Space to the Front Panel without Resizing the Window

	Labeling
	Text Characteristics
	Designing User Interfaces
	Using Front Panel Controls and Indicators
	Designing Dialog Boxes


	Chapter 5 Building the Block Diagram
	Block Diagram Objects
	Block Diagram Terminals
	Control and Indicator Data Types
	Constants

	Block Diagram Nodes
	Polymorphic VIs and Functions

	Functions Overview
	Adding Terminals to Functions
	Built-in VIs and Functions

	Express VIs
	Using Wires to Link Block Diagram Objects
	Wire Appearance and Structure
	Wiring Objects
	Bending Wires
	Undoing Wires
	Automatically Wiring Objects
	Selecting Wires

	Correcting Broken Wires
	Coercion Dots

	Block Diagram Data Flow
	Data Dependency and Artificial Data Dependency
	Missing Data Dependencies
	Flow-Through Parameters

	Data Flow and Managing Memory

	Designing the Block Diagram

	Chapter 6 Running and Debugging VIs
	Running VIs
	Correcting Broken VIs
	Finding Causes for Broken VIs
	Common Causes of Broken VIs

	Debugging Techniques
	Execution Highlighting
	Single-Stepping
	Probe Tool
	Breakpoints

	Handling Errors
	Error Clusters
	Using While Loops for Error Handling
	Using Case Structures for Error Handling


	Chapter 7 Creating VIs and SubVIs
	Searching for Examples
	Using Built-In VIs and Functions
	Creating SubVIs
	Creating an Icon
	Building the Connector Pane
	Creating SubVIs from Sections of a VI
	Designing SubVI Front Panels
	Viewing the Hierarchy of VIs
	Polymorphic VIs

	Saving VIs
	Naming VIs
	Saving for a Previous Version

	Customizing VIs

	Chapter 8 Loops and Structures
	For Loop and While Loop Structures
	For Loops
	While Loops
	Controlling Timing
	Auto-Indexing Loops
	Auto-Indexing to Set the For Loop Count
	Auto-Indexing with While Loops

	Using Loops to Build Arrays
	Shift Registers and the Feedback Node in Loops
	Shift Registers
	Feedback Node

	Default Data in Loops

	Case, Sequence, and Event Structures
	Case Structures
	Case Selector Values and Data Types
	Input and Output Tunnels
	Using Case Structures for Error Handling

	Sequence Structures
	Event Structures


	Chapter 9 Grouping Data Using Strings, Arrays, and Clusters
	Grouping Data with Strings
	Strings on the Front Panel
	String Display Types

	Tables
	Editing, Formatting, and Parsing Strings
	Formatting and Parsing Strings


	Grouping Data with Arrays and Clusters
	Arrays
	Restrictions
	Indexes
	Examples of Arrays
	Creating Array Controls, Indicators, and Constants
	Creating Multidimensional Arrays
	Array Functions
	Default Data in Arrays

	Clusters
	Order of Cluster Elements
	Cluster Functions
	Creating Cluster Controls, Indicators, and Constants



	Chapter 10 Graphs and Charts
	Types of Graphs and Charts
	Waveform Graphs and Charts
	Waveform Graphs
	Waveform Charts
	Waveform Data Type

	XY Graphs
	Intensity Graphs and Charts
	Intensity Charts
	Intensity Graphs

	Digital Waveform Graphs
	Digital Waveform Data Type

	3D Graphs

	Customizing Graphs and Charts
	Using Multiple X- and Y-Scales
	Autoscaling
	Formatting X- and Y-Scales
	Using the Graph Palette
	Customizing Graph and Chart Appearance
	Customizing Graphs
	Using Graph Cursors
	Using Graph Annotations
	Customizing 3D Graphs

	Customizing Charts
	Configuring Chart History Length
	Configuring Chart Update Modes
	Using Overlaid and Stacked Plots



	Chapter 11 File I/O
	Basics of File I/O
	Choosing a File I/O Format
	Using VIs and Functions for Common File I/O Operations
	Using Storage VIs
	Creating Text and Spreadsheet Files
	Formatting and Writing Data to Files
	Scanning Data from Files

	Creating Binary Files
	Creating Datalog Files
	Writing Waveforms to Files
	Reading Waveforms from Files

	Chapter 12 Documenting and Printing VIs
	Documenting VIs
	Printing VIs

	Appendix A Technical Support and Professional Services
	Glossary
	Numbers/Symbols
	A
	B-C
	D
	E
	F
	G-I
	L-M
	N
	O-P
	R
	S
	T
	U-W

	Index
	Numerics
	A-B
	C
	D
	E-F
	G-H
	I
	K-M
	N-P
	Q-S
	T
	U-V
	W-Y




